• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜艇与UUV协同作战发展现状及关键技术

张鑫明 韩明磊 余益锐 黄田力 陈 谦 吴 铭

张鑫明, 韩明磊, 余益锐, 黄田力, 陈 谦, 吴 铭. 潜艇与UUV协同作战发展现状及关键技术[J]. 水下无人系统学报, 2021, 29(5): 497-508. doi: 10.11993/j.issn.2096-3920.2021.05.001
引用本文: 张鑫明, 韩明磊, 余益锐, 黄田力, 陈 谦, 吴 铭. 潜艇与UUV协同作战发展现状及关键技术[J]. 水下无人系统学报, 2021, 29(5): 497-508. doi: 10.11993/j.issn.2096-3920.2021.05.001
ZHANG Xin-ming, HAN Ming-lei, Yü Yi-rui, HUANG Tian-li, CHEN Qian, WU Ming. Development and Key Technologies of Submarine-UUV Cooperative Operation[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 497-508. doi: 10.11993/j.issn.2096-3920.2021.05.001
Citation: ZHANG Xin-ming, HAN Ming-lei, Yü Yi-rui, HUANG Tian-li, CHEN Qian, WU Ming. Development and Key Technologies of Submarine-UUV Cooperative Operation[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 497-508. doi: 10.11993/j.issn.2096-3920.2021.05.001

潜艇与UUV协同作战发展现状及关键技术

doi: 10.11993/j.issn.2096-3920.2021.05.001
详细信息
    作者简介:

    张鑫明(1986-), 男, 博士, 高级工程师, 主要研究方向为水下体系对抗、信息与通信系统.

  • 中图分类号: TJ630.1 E925 E837

Development and Key Technologies of Submarine-UUV Cooperative Operation

  • 摘要: 潜艇和无人水下航行器(UUV)协同作战是现代海军作战能力的重要组成部分, 也是海军装备中新式作战理念、新技术应用最为广泛的领域。文章介绍了国内外潜艇与UUV协同作战研究的发展现状, 主要分析了美国、俄罗斯和英国等国家在水下作战体系、协同作战系统和新质水下作战力量等方面的发展思路; 重点研究了水下协同作战的关键技术, 涉及水下多介质传输、网络化协同探测、多源异构信息融合等装备体系技术, 以及控制体系结构、协同任务规划与分配、贫弱信息下的自主决策等作战应用技术, 以期为装备技术和作战应用协调发展、水下新质作战力量的快速形成提供技术参考。

     

  • [1] 钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(3): 215-225.

    Zhong Hong-wei. Review and Prospect of Equipment and Techniques for Unmanned Undersea Vehicle in Foreign Countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(3): 215-225.
    [2] Whitman E C. SOSUS: The “Secret Weapon” of Undersea Surveillance[J]. Undersea Warfare. 2005, 7(2): 436.
    [3] Department of the Navy. Definitive Contract WD10H 199409DN6600194C6023[EB/OL]. Federal Contract Aw- ard. [1994-09-15]. https://govtribe.com/award/fedeal-contract-award/definitive-contract-wd10h199409dn6600194c6023.
    [4] Hatch M D, Kaina J L, Mahler R P, et al. Data Fusion Methodologies to Support Theater Level and Deployable Surveillance Systems[C]//Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 1998, 1: 563- 567.
    [5] Rice J A. US Navy Seaweb Development[C]//Proceedings of the Second Workshop on Underwater Networks (WuWNet’07). Association for Computing Machinery. Montreal, Quebec, Canada: ACM, 2007.
    [6] Rice J A, Creber R K, Fletcher C L, et al. Seaweb Underwater Acoustic Nets[R]. San Diego, USA: Biennial Review 2001, SSC San Diego Technical Document TD 3117, 2001: 234-250.
    [7] Stewart M S, Pavlos J. A Means to Networked Persistent Undersea Surveillance(U)[C]//Submarine Technology Sy- mposium Session V. Stewart. British Columbia, Canada: STS, 2006: 16-18.
    [8] 董晓明. 海上无人装备体系概览[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020: 225-337.
    [9] DARPA. Department of Defense Fiscal Year(FY) 2018 Budget Estimates[EB/OL]. [2017-05-01]. https://www. darpa.mil/attachments/DARPA_FY18_Presidents_BudgetRequest.pdf.
    [10] DARPA. Mobile Off-board Clandestine Communications and Approach(MOCCA)[EB/OL]. Broad Agency Announcement. [2016-01-24]. https://govtribe.com/opportunity/federal-contract-opportunity/mobile-off-board-clandestine-communications-and-approach-mocca-darpabaa1610.
    [11] DARPA. Department of Defense Fiscal Year(FY) 2021 Budget Estimates[EB/OL]. Defense-Wide Justification Book Volume. [2020-02-02]. https://comptroller.defense.gov/Portals/45/Documents/de-fbudget/fy2021/budget_justifica-tion/pdfs/03_RDT_and_E/RDTE_Vol1_DARPA_ MasterJustificationBook_PB_2021.pdf.
    [12] NAVSEA. Annual Naval Technology Exercise(ANTX) 2016 Overview[EB/OL]. [2016-08-16]. https://www. Nav- sea.navy.mil/Portals/103/Documents/NUWC_Newport/A-NTXdocs/ANTX%202016Summary_Distro%20AFinal.p- df?ver=2016-12-07-110753-347.
    [13] AUVSI News. Navy Establishes First UUV Squadron, UUVRON 1[EB/OL]. [2017-09-29]. https://www.auvsi. org/navy-establishes-first-uuv-squadron-uuvron-1.
    [14] NAVSEA. Annual Naval Technology Exercise(ANTX) 2019 Directory[EB/OL]. [2019-08-29]. https://www.nav- sea.navy.mil/Portals/103/Documents/NUWC_Newport/ANTdocs/ANTX19Directory.pdf?ver=2019-08-21-113113-900.
    [15] Department of the Navy. The Navy Unmanned Undersea Vehicle(UUV) Master Plan[R/OL]. [2004-09-09]. https:// www.hsdl.org/?view&did=708654.
    [16] Commander, Submarine Forces. Design for Undersea Warfare[R/OL]. [2012-09-10]. https://www.hsdl.org/?vi- ew&did=726701.
    [17] The Defense Science Board. Next-Generation Unmanned Undersea Systems[R/OL]. [2016-10-12]. https://apps. dtic. mil/dtic/tr/fulltext/u2/1023641.pdf.
    [18] Undersea Warfare Chief Technology Office. The Undersea Warfare Science & Technology Objectives[R/OL]. [2016- 07-23]. https://defenseinnovationmarketplace.dtic.mil/wp-content/uploads/2018/02/USW_ST_Objectives.pdf.
    [19] Undersea Warfare Chief Technology Office. The Undersea Warfare Science & Technology Strategy[R/OL]. [2016- 05-23]. https://defenseinnovationmarketplace.dtic.mil/wp-content/uploads/2018/02/USW_Strategy.pdf.
    [20] Department of Defense. Unmanned Systems Intergrated Roadmap(2017-2042)[R/OL]. [2017-06-13]. https://s3. D- ocument-cloud.org/documents/4801652/UAS-2018-Road-map-1.pdf.
    [21] Department of the Navy. Department of Navy Unmanned Systems(UxS) Goals[R/OL]. [2018-01-11]. https://nps. edu/documents/105302057/105304195/ASN_RDA_SIGNED+DON+UxS+GOALS_2018.pdf/5452a9cb-f29f-4a4a-b493-fc3a75ca54e8.
    [22] Department of the Navy. Department of the Navy Strategic Roadmap for Unmanned Systems[R/OL]. [2018- 05-29]. https://www.secnav.navy.mil/rda/Documents/DON-Strategic-Roadmap-for-Unmanned-Systems.docx.
    [23] Bryan Clark. The Emerging Era in Undersea Warfare[R/OL]. CSBA. [2015-01-22]. https://csbaonline. org/uploads/documents/CSBA6292_(Undersea_Warfare_Re- print)_web.pdf.
    [24] Department of the Navy. Department of Navy Unmanned Campaign Framework[R/OL]. [2021-03-16]. https://www.navy.mil/Portals/1/Strategic/20210315%20Unmanned%20 Cam-paign_Final_LowRes.pdf?ver=LtCZ-BPlWki6vCBTd gtDMA%3D%3D.
    [25] Navy Naval Defense Industry News. Russian Northern Fleet Creates Submarine Division for Deep-Water Operations[EB/OL]. [2018-04-27]. https://www. navyrecogni-tion.com/index.php/naval-news/naval-news-archive/2018/april-2018-navy-naval-defense-news/6169-russian-northern-fleet-creates-submarine-division-for-deep-water-operations.html.
    [26] Kyle M. How Russia’s New Doomsday Torpedo Works [EB/OL]. [2018-03-07]. https://www.popularmechanics. com/military/weapons/a19160734/how-russias-new-doomsday-torpedo-works/.
    [27] IndraStra. Russia Launches Belgorod Nuclear Submarine to carry Poseidon Underwater Drones[EB/OL]. [2019-04-29]. https://medium.com/indrastra/russia-launches-bel- go-rod-nuclear-submarine-to-carry-poseidon-underwater- drones-d49bda5287e3.
    [28] Naval Technology. Royal Navy Details “Atlantis” Hybrid Underwater Capability[EB/OL]. [2021-04-06]. https:// www.naval-technology.com/news/royal-navy-details-atlantis-hybrid-underwater-capability/.
    [29] DARPA. Hydra[EB/OL]. Broad Agency Announcement. [2013-08-22]. https://govtribe.com/opportunity/federal- contract-opportunity/hydra-darpabaa1339.
    [30] DASA. Developing The Royal Navy’s Autonomous Underwater Capability[EB/OL]. Competition Document. [2019-6-6]. https://www.gov.uk/government/publications/ competition-developing-the-royal-navys-autonomous-un- der-water-capability/competition-document-developing-the-royal-navys-autonomous-underwater-capability.
    [31] 陶伟. 基于马赛克战的水下有人-无人集群控制结构[J].指挥与控制学报, 2020, 6(3): 264-270.

    Tao Wei. Control Structure of Underwater Manned and Unmanned Swarm Based on Mosaic Warfare[J]. Journal of Command and Control, 2020, 6(3): 264-270.
    [32] 吴超, 杜辉, 何青海. 水下“有人/无人”作战平台协同运用方式探讨[J]. 舰船科学技术, 2020, 42(17): 153-156.

    Wu Chao, Du Hui, He Qing-hai. Discussion on the cooperative use mode of underwater manned/unmanned combat platform[J]. Ship Science and Technology, 2020, 42(17): 153-156.
    [33] 王圣洁, 康凤举, 韩翃. 潜艇与智能无人水下航行器协同系统控制体系及决策研究[J]. 兵工学报, 2017, 38(2): 335-344.

    Wang Sheng-jie, Kang Feng-ju. Han Hong. Research on Control and Decision-making of Submarine and Intelligent UUV Cooperative System[J]. Acta Armamentarii, 2017, 38(2): 335-344.
    [34] Hydromea. Hydromea Launches the Most Advanced Wireless Underwater Optical Modem LUMA X-the Future in Affordable High-Speed, Wireless Subsea Connectivi-ty[EB/OL]. [2020-10-08]. https://www.hydromea.com/2020/10/09/hydromea-launches-the-most-advanced-wireless-underwater-modem-luma-x-the-future-in-affordable-high-speed-wireless-subsea-connectivity/.
    [35] Tamura Y , Sakuma H , Morita K , et al. The First 0.14 dB/km Loss Optical Fiber and its Impact on Submarine Transmission[J]. Journal of Lightwave Technology, 2018, 36(1): 44-49.
    [36] Kemp M A, Franzi M, Haase A, et al. A High Q Piezoelectric Resonator as a Portable VLF Transmitter[J]. Nature Communications, 2019, 10(1): 1715.
    [37] Schneider J D, Domann J P, Panduranga M K, et al. Experimental Demonstration and Operating Principles of a Multiferroic Antenna[J]. Journal of Applied Physics, 2019, 126: 224104.
    [38] Schneider T, Schmidt H.Unified Command and Control for Heterogeneous Marine Sensing Networks[J]. Journal of Field Robotics, 2010, 27(6): 876-889.
    [39] Kalwa J.The GREX-project: Coordination and Control of Cooperating Heterogeneous Unmanned Systems in Un-certain Environments[C]//Oceans 2009-Europe. Bremen, Germany: IEEE, 2009.
    [40] 张贺, 王申涛, 李海涛. 水下量子保密通信可行性分析[J]. 中国新通信, 2018, 20(8): 29-30.
    [41] 程锦房, 张伽伟, 姜润翔, 等. 水下电磁探测技术的发展现状[J]. 数字海洋与水下攻防, 2019, 2(4): 45-49.

    Cheng Jin-fang, Zhang Jia-wei, Jiang Run-xiang, et al. Development Status of Underwater Electromagnetic Detection Technology[J]. Digital Ocean & Underwater War-fare, 2019, 2(4): 45-49.
    [42] 谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究. 2021, 16(1): 7-17, 31.

    Xie Wei, Tao Hao, Gong Jun-bin, et al. Research Advances in the Development Status and Key Technology of Unmanned Marine Vehicle Swarm Operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7-17, 31.
    [43] Gao J, Li P, Chen Z, et al. A Survey on Deep Learning for Multimodal Data Fusion[J]. Neural Computation, 2020, 32(5): 829-864.
    [44] 唐胜景, 史松伟, 张尧, 等. 智能化分布式协同作战体系发展综述[J]. 空天防御, 2019, 2(1): 6-13.

    Tang Sheng-jing, Shi Song-wei, Zhang Yao, et al. Review on the Development of Intelligence-based Distributed Cooperative Operational System[J]. Air & Space Defense, 2019, 2(1): 6-13.
    [45] Millan P, Orihuela L, Vivas C, et al. Distributed Consen-sus-Based Estimation Considering Network Induced Delays and Dropouts[J]. Automatica, 2012, 48(10): 2726-2729.
    [46] 李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术. 2018, 1(2): 15-23.

    Li Feng-lei, Lu Hao, Song Chuang, et al. Development of Intelligent Warfare and Unmanned System Technology[J]. Unmanned Systems Technology, 2018, 1(2): 15-23.
    [47] 蒋荣华. 潜载UUV的作战使用分析[J]. 舰船电子工程,2015, 35(10): 17-20, 69.

    Jiang Rong-hua. Application Analysis of Submarine UUV[J]. Ship Electronic Engineering, 2015, 35(10): 17- 20, 69.
    [48] 唐胜景, 史松伟, 张尧, 等. 智能化分布式协同作战体系发展综述[J]. 空天防御, 2019, 2(1): 6-13.

    Tang Sheng-jing, Shi Song-wei, Zhang Yao, et al. Review on the Development of Intelligence-based Distributed Cooperative Operational System[J]. Air & Space Defense, 2019, 2(1): 6-13.
    [49] 万路军, 姚佩阳, 孙鹏. 有人/无人作战智能体分布式任务分配方法[J]. 系统工程与电子技术, 2013, 35(2): 310-316.

    Wan Lu-jun, Yao Pei-yang, Sun Peng. Distributed Task Allocation Method of Manned/Unmanned Combat Agents [J]. Systems Engineering and Electronics, 2013, 35(2): 310-316.
    [50] 邹启杰, 张汝波, 唐平鹏, 等. 基于多属性决策的自主等级评估算法[J]. 华中科技大学学报(自然科学版), 2011, 39(z2): 382-384.

    Zou Qi-jie, Zhang Ru-bo, Tang Ping-peng, et al. Evaluation Algorithm for Autonomy Level Based on Multi-Attribute Decision Making[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2011, 39(z2): 382-384.
    [51] 张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297.

    Zhang Wei, Wang Nai-xin, Wei Shi-lin, et al. Overview of Unmanned Underwater Vehicle Swarm Development Status and Key Technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297.
    [52] 宋运忠, 杨飞飞. 基于行为法多智能体系统构形控制研究[J]. 控制工程, 2012, 19(4): 687-690.

    Song Yun-zhong, Yang Fei-fei. On Formation Control Based on Behaviour For Second-order Multi-agent System[J]. Control Engineering of China, 2012, 19(4): 687- 690.
    [53] 张帅. 基于人工势场法的无人机编队关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2018.
    [54] 曹和云, 倪先胜, 何利勇, 等. 国外潜载UUV布放与回收技术研究综述[J]. 中国造船, 2014, 55(2): 200-208.
  • 加载中
计量
  • 文章访问数:  2268
  • HTML全文浏览量:  63
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-07-29
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号