• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋温差能供电水下滑翔机的液电转换过程建模与效率分析

王国晖 杨亚楠 王延辉 王树新

王国晖, 杨亚楠, 王延辉, 王树新. 海洋温差能供电水下滑翔机的液电转换过程建模与效率分析[J]. 水下无人系统学报, 2021, 29(4): 451-458. doi: 10.11993/j.issn.2096-3920.2021.04.012
引用本文: 王国晖, 杨亚楠, 王延辉, 王树新. 海洋温差能供电水下滑翔机的液电转换过程建模与效率分析[J]. 水下无人系统学报, 2021, 29(4): 451-458. doi: 10.11993/j.issn.2096-3920.2021.04.012
WANG Guo-hui, YANG Ya-nan, WANG Yan-hui, WANG Shu-xin. Modeling and Efficiency Analysis of the Hydro-electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 451-458. doi: 10.11993/j.issn.2096-3920.2021.04.012
Citation: WANG Guo-hui, YANG Ya-nan, WANG Yan-hui, WANG Shu-xin. Modeling and Efficiency Analysis of the Hydro-electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy[J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 451-458. doi: 10.11993/j.issn.2096-3920.2021.04.012

海洋温差能供电水下滑翔机的液电转换过程建模与效率分析

doi: 10.11993/j.issn.2096-3920.2021.04.012
基金项目: 国家自然科学基金(52006155).
详细信息
    通讯作者:

    杨亚楠(1988-), 男, 博士, 讲师,?span>主要研究方向为环境能源水下航行器研制及其应用.

  • 中图分类号: TJ630 TP242

Modeling and Efficiency Analysis of the Hydro-electric Conversion Process of Underwater Glider Powered by Ocean Thermal Energy

  • 摘要: 海洋温差能供电是提高水下滑翔机的续航里程和在位工作时长的有效技术手段。其能量传递路径的优化与能量转化效率提升对于保证水下滑翔机正常工作至关重要。基于水下滑翔机海洋温差能供电系统中机械能-电能转换过程的能量转换机理与损耗机理, 建立了液压马达以及发电机等关键器件的参数化能量平衡方程、机械能-电能转换模型以及转换效率计算公式, 开展了能量转换过程的效率分析。通过平台试验与模型求解结果对比可知, 压力能-动能、动能-电能的能量转化效率的相对误差较小, 分别仅为6.37%、5.12%。验证了模型的准确性。在此基础上, 通过对模型的效率分析, 对海洋温差能供电系统进行了优化设计与试制。在后续的海试试验中, 试验样机可以收集6701 J的电能, 压力能-电能转化过程的能量转化效率可达38.86%, 验证了系统的有效性。

     

  • [1] 唐国建, 崔凤. 海洋开发对中国未来发展的战略意义初探[J]. 上海行政学院学报, 2013, 14(5): 56-61.

    Tang Guo-jian, Cui Feng. The Strategic Significance of Marine Development for Chinese Future Development[J]. The Journal of Shanghai Administration Institute, 2013, 14(5): 56-61.
    [2] 李乃胜. 聚焦海洋装备国产化, 为建设海洋强国提供强有力的工具性支撑[N]. 中国科学报, 2017-8-9.
    [3] 俞建成, 孙朝阳, 张艾群. 海洋机器人环境能源收集利用技术现状[J]. 机器人, 2018, 40(1): 89-101.

    Yu Jian-cheng, Sun Chao-yang, Zhang Ai-qun. The Pre-sent Status of Environmental Energy Harvesting and Uti-lization Technology of Marine Robots[J]. Robot, 2017, 40(1): 89-101.
    [4] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-lei, Wang Yan-hui, Yang Shao-qiong, et al. De-velopment of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [5] Webb D, Simonetti P, Jones C. SLOCUM: An Underwater Glider Propelled by Environmental Energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452.
    [6] Yang Y, Wang Y, Ma Z, et al. A Thermal Engine for Un-derwater Glider Driven by Ocean Thermal Energy[J]. Applied Thermal Engineering, 2016, 99: 455-464.
    [7] Ma Z, Wang Y, Wang S, et al. Ocean Thermal Energy Harvesting with Phase Change Material for Underwater Glider[J]. Applied Energy, 2016, 178(15): 557-566.
    [8] Wang M, Jing R, Zhang H, et al. An Innovative Organic Rankine Cycle(ORC) Based Ocean Thermal Energy Con-version(OTEC) System with Performance Simulation and Multi-objective Optimization[J]. Applied Thermal Engi-neering, 2018, 145: 743-754.
    [9] Kong Q, Ma J, Che C. Numerical Simulation and Exper-imental Study of Volumetric Change Rate During Phase Change Process[J]. International Journal of Energy Re-search, 2009, 33(5): 513-525.
    [10] Kong Q, Ma J, Xia D. Numerical Simulation and Optimi-Zation of Underwater Glider Operating Process[J]. Rene- wable Energy, 2010, 35: 771-779.
    [11] 田振华, 周友援, 柳军飞. 海洋温差能发电自升降平台系统建模与仿真[J]. 四川兵工学报, 2014, 35(1): 31-33, 52.

    Tian Zhen-hua, Zhou You-yuan, Liu Jun-fei. Modeling and Simulating of Thermal Recharging(TREC) and Power Unit[J]. Journal of Sichuan Ordnance, 2014, 35(1): 31-33, 52.
    [12] Wang G, Ha D, Wang K. Harvesting Environmental Thermal Energy Using Solid/liquid Phase Change Materials[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(8): 1632-1648.
    [13] Wang G, Ha D, Wang K. A Scalable Environmental Ther-mal Energy Harvester Based on Solid/liquid Phase-change Materials[J]. Applied Energy, 2019, 250: 1468-1480.
    [14] 桑勇, 邵利来, 赵健龙, 等. 基于 AMESim 蓄能器组的动态特性研究[J]. 液压气动与密封, 2018, 38(1): 20-24.

    Sang Yong, Shao Li-lai, Zhao Jian-long, et al. Study on Multiple Accumulator in Hydraulic System Based on AMESim[J]. Hydraulics Pneumatics and Seals, 2018, 38 (1): 20-24.
    [15] 林添良.工程机械节能技术及应用[M].北京: 机械工业出版社, 2017: 101-105.
  • 加载中
计量
  • 文章访问数:  116
  • HTML全文浏览量:  26
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-11-11
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回
    服务号
    订阅号