• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下反蛙人火箭弹六自由度弹道仿真

王金云 王孟军 周晖杰

王金云, 王孟军, 周晖杰. 水下反蛙人火箭弹六自由度弹道仿真[J]. 水下无人系统学报, 2021, 29(3): 313-319. doi: 10.11993/j.issn.2096-3920.2021.03.010
引用本文: 王金云, 王孟军, 周晖杰. 水下反蛙人火箭弹六自由度弹道仿真[J]. 水下无人系统学报, 2021, 29(3): 313-319. doi: 10.11993/j.issn.2096-3920.2021.03.010
WANG Jin-yun, WANG Meng-jun, ZHOU Hui-jie. Six-Degree-of-Freedom Ballistic Simulation of Underwater Anti-Frogman Rocket[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 313-319. doi: 10.11993/j.issn.2096-3920.2021.03.010
Citation: WANG Jin-yun, WANG Meng-jun, ZHOU Hui-jie. Six-Degree-of-Freedom Ballistic Simulation of Underwater Anti-Frogman Rocket[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 313-319. doi: 10.11993/j.issn.2096-3920.2021.03.010

水下反蛙人火箭弹六自由度弹道仿真

doi: 10.11993/j.issn.2096-3920.2021.03.010
详细信息
    作者简介:

    王金云(1978-), 男, 博士, 研究员, 主要研究方向为水下弹道建模与仿真.

  • 中图分类号: TJ630 TJ012.3

Six-Degree-of-Freedom Ballistic Simulation of Underwater Anti-Frogman Rocket

  • 摘要: 水下火箭弹作为近海港口防御的一种新型预置武器, 具有速度高、杀伤力大、使用方便等优点, 可有效对抗敌方蛙人的侵扰。为深入探索其水下弹道航行特性, 以某型水下火箭弹为研究对象, 建立水动力学弹道运动模型, 基于VC++语言自主编程, 对水下火箭弹六自由度弹道航行特性进行仿真, 并通过水下发射试验对其航行稳定性进行验证。结果表明, 在一定初始攻角条件下, 初速为100 m/s的射弹, 4.3 s内速度衰减至65 m/s, 并趋于稳定; 弹道水平射程达到660 m, 射高突破37 m; 弹体俯仰角在4 s内由12°变化为–7°, 俯仰角速度3 s内有5°~ –8°的波动, 弹道倾角从初始10°变化为–12°, 攻角由5°变化为–6°, 这些参数均发生显著变化, 需在水下弹道优化设计中充分考虑。该方法可为新一代水下反蛙人预置武器弹道设计提供参考。

     

  • [1] 宋海龙. 水弹道建模与仿真方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 1-19.
    [2] 邬明. 考虑空泡的空投航行器入水弹道研究[J]. 四川兵工学报, 2015, 36(3): 23-27.

    Wu Ming. Research on Water Entry and Underwater Trajectory of an Airborne Vehicle with Consideration of Cavity[J]. Journal of Sichuan Ordnance, 2015, 36(3): 23-27.
    [3] Chen C, Cao W, Wang C, et al. Trajectory Simulation for Underwater Vehicle with Power-launched [J]. Journal of Harbin Institute of Technology, 2016, 23(1): 17-22.
    [4] Ye H, Zhou H, Wang X. Modeling and Simulation on the Underwater Trajectory of Non-powered Vehicle Discharged from the Broadside[J]. Journal of Harbin Institute of Technology, 2016, 23(2): 79-86.
    [5] Zhou L, Yu Y. Study on Interaction Characteristics Between Multi-gas Jets and Water During the Underwater Launching Process[J]. Experimental Thermal and Fluid Science, 2017, 83: 200-206.
    [6] 徐健, 杨臻, 李强. 基于Ls-Dyna软件的水下弹的外弹道仿真[J]. 火力与指挥控制, 2016, 41(3): 5-7.

    Xu Jian, Yang Zhen, Li Qiang. Simulation for Submarine Bullet’s Exterior Ballistic Based on Dyna[J]. Fire and Command Control, 2016, 41(3): 5-7.
    [7] 黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017: 67-94.
    [8] 张学伟. 水下超空泡射弹运动仿真与弹道特性分析[D]. 太原: 中北大学, 2017: 18-25.
    [9] Jiang Y, Bai T, Gao Y, et al. Water Entry of a Constraint Posture Body Under Different Entry Angles and Ventilation Rates[J]. Ocean Engineering, 2018, 153: 53-59.
    [10] 孟庆操, 杨光. 反蛙人杀伤弹水中弹道模型与仿真[J]. 火力与指挥控制, 2018, 43(5): 117-120.

    Meng Qing-cao, Yang Guang. Research on Underwater Ballistic Model and Simulation of Anti-frogman Fragmentation Bomb[J]. Fire and Command Control, 2018, 43(5): 117-120.
    [11] 龚铂淳, 马少杰, 魏健. 水下单兵火箭弹弹道计算[J]. 兵器装备工程学报, 2018, 39(11): 44-48.

    Gong Bo-chun, Ma Shao-jie, Wei Jian. Ballistic Calculation of Underwater Individual Rocket[J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 44-48.
    [12] Degtiar V G, Pegov V I, Moshkin I Y, et al. Mathematical Modeling of the Processes of Heat and Mass Transfer of Hot Gas Jets with Fluid During Underwater Rocket Launches[J]. High Temperature, 2019, 57(5): 707-711.
    [13] Zhang X, Yu Y, Zhou L. Numerical Study on the Multiphase Flow Characteristics of Gas Curtain Launch for Underwater Gun[J]. International Journal of Heat and Mass Transfer, 2019, 134: 250-261.
    [14] Kumar N, Rani M. An Efficient Hybrid Approach for Trajectory Tracking Control of Autonomous Underwater Vehicles[J]. Applied Ocean Research, 2020, 95: 102053.
    [15] Guerrero J, Torres J, Creuze V. Adaptive Disturbance Observer for Trajectory Tracking Control of Underwater Vehicles[J]. Ocean Engineering, 2020, 200: 107080.
    [16] Xie T, Li Y, Jiang Y, et al. Back-stepping Active Disturbance Rejection Control for Trajectory Tracking of Under-actuated Autonomous Underwater Vehicles with Position Error Constraint[J]. International Journal of Advanced Robotic Systems, 2020, 3: 1-12.
    [17] Chen C, Yuan X, Liu X, et al. Experimental and Numerical Study on the Oblique Water Entry Impact of a Cavitating Vehicle with a Disk Cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494.
    [18] Chen T, Huang W, Zhang W, et al. Experimental Inves- tigation on Trajectory Stability of High-speed Water Entry Projectiles[J]. Ocean Engineering, 2019, 175: 16-24.
    [19] 侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2): 332-341.

    Hou Yu, Huang Zhen-gui, Guo Ze-qin, et al. Experimental Investigation on Shallow-angle Oblique Water-entry of a High-speed Supercavitating Projectile[J]. ACTA Armamentarii, 2020, 41(2): 332-341.
    [20] 杨继锋, 马亮, 刘丙杰, 等. 空化条件下潜射航行体水弹道修正方法研究[J]. 弹箭与制导学报, 2020, 40(3): 27-30, 34.

    Yang Ji-feng, Ma Liang, Liu Bing-jie, et al. Research on Water Trajectory Correction Method of Submarine Launched Vehicle Based on Cavitation Conditions[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(3): 27-30, 34.
    [21] 张代国, 潘菲菲, 张晓乐. 自旋前伸空化回转体高速斜人水稳定性仿真研究[J]. 数字海洋与水下攻防, 2020, 3(1): 40-45.

    Zhang Dai-guo, Pan Fei-fei, Zhang Xiao-le. Stability Simulation on High-speed Water Entry with Certain Angle of Self-spin Forward-extended Cavitating Body[J]. Digital Ocean & Underwater Warfare, 2020, 3(1): 40-45.
  • 加载中
计量
  • 文章访问数:  113
  • HTML全文浏览量:  25
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-20
  • 修回日期:  2020-07-30
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回
    服务号
    订阅号