• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单目视觉的水下机器人相对位姿精确控制

王晓鸣 吴高升

王晓鸣, 吴高升. 基于单目视觉的水下机器人相对位姿精确控制[J]. 水下无人系统学报, 2021, 29(3): 299-307. doi: 10.11993/j.issn.2096-3920.2021.03.008
引用本文: 王晓鸣, 吴高升. 基于单目视觉的水下机器人相对位姿精确控制[J]. 水下无人系统学报, 2021, 29(3): 299-307. doi: 10.11993/j.issn.2096-3920.2021.03.008
WANG Xiao-ming, WU Gao-sheng. Relative Position and Attitude Precise Control of Underwater Robot Based on Monocular Vision[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 299-307. doi: 10.11993/j.issn.2096-3920.2021.03.008
Citation: WANG Xiao-ming, WU Gao-sheng. Relative Position and Attitude Precise Control of Underwater Robot Based on Monocular Vision[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 299-307. doi: 10.11993/j.issn.2096-3920.2021.03.008

基于单目视觉的水下机器人相对位姿精确控制

doi: 10.11993/j.issn.2096-3920.2021.03.008
基金项目: 天津市教委科研计划项目(2017KJ022).
详细信息
    作者简介:

    王晓鸣(1981-), 男, 博士, 副教授, 主要研究方向为机器人和嵌入式控制系统开发.

  • 中图分类号: TJ630.33 TB24

Relative Position and Attitude Precise Control of Underwater Robot Based on Monocular Vision

  • 摘要: 针对水下机器人在实际作业中需要相对于特定的作业对象保持相对稳定且具有一定抗干扰能力的特点, 提出一种基于单目视觉位姿测量原理的水下机器人稳定性控制方法, 该方法的关键技术在于通过重投影法对水下机器人的三维位姿进行测量。以“观海ROV”为实验载体, 在实验水池中放置待观察目标, 利用水下机器人的前视摄像头作为单目视觉传感器, 建立实验验证系统。从实验结果所得到的位置数据表明: 采用基于单目视觉位姿测量原理控制方法的水下机器人能够在恒定水流冲击下相对于特定对象保持基本稳定, 可满足水下机器人在实际作业环境中的需求, 验证了文中方法的有效性。

     

  • [1] 厉文涛, 聂晓明, 周健. 基于二维激光多普勒测速仪建立新组合导航系统的方法[J]. 中国激光, 2020, 47(3): 296-274.

    Li Wen-tao, Nie Xiao-ming, Zhou Jian. Method for Establishing New Integrated Navigation System Based on Two-Dimensional Laser Doppler Velocimeter[J]. Chinese Journal of Lasers, 2020, 47(3): 296-274.
    [2] 魏延辉, 张皓渊. 水下作业型ROV定深控制系统的设计[J]. 中国科技论文, 2016, 11(8): 898-903.

    Wei Yan-hui, Zhang Hao-yuan. Design of the Depth Control System for Underwater Work-class ROV[J]. China Sciencepaper, 2016, 11(8): 898-903.
    [3] 徐凤强, 董鹏, 王辉兵, 等. 基于水下机器人的海产品智能检测与自主抓取系统[J]. 北京航空航天大学学报, 2019, 45(12): 2393-2402.

    Xu Feng-qiang, Dong Peng, Wang Hui-bing, et al. Intelligent Detection and Autonomous Capture System of Seafood Based on Underwater Robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2393-2402.
    [4] 周浩, 姜述强, 黄海, 等. 基于视觉感知的海生物吸纳式水下机器人目标捕获控制[J]. 机器人, 2019, 41(2): 242-249, 275.

    Zhou Hao, Jiang Shu-qiang, Huang Hai, et al. Vision Based Target Capture Control for Sea Organism Absorptive Underwater Vehicle[J]. Robot, 2019, 41(2): 242-249, 275.
    [5] 唐旭东, 庞永杰, 张赫, 等. 基于单目视觉的水下机器人管道检测[J]. 机器人, 2010, 32(5): 592-600.

    Tang Xu-dong, Pang Yong-jie, Zhang He, et al. Underwater Pipeline Detection by AUV Based on Monocular Vision[J]. Robot, 2010, 32(5): 592-600.
    [6] 王鹏, 赵汗青, 王江峰, 等. 基于单目视觉的相机位姿解算[J]. 电子科技, 2017, 30(12): 75-78.

    Wang Peng, Zhao Han-qing, Wang Jiang-feng, et al. Based on Monocular Vision Camera Pose Computation[J]. Electronic Science and Technology, 2017, 30(12): 75-78.
    [7] 王中宇, 李亚茹, 郝仁杰, 等. 基于点特征的单目视觉位姿测量算法[J]. 红外与激光工程, 2019, 48(5): 169-176.

    Wang Zhong-yu, Li Ya-ru, Hao Ren-jie, et al. Monocular Vision Pose Measurement Algorithm Based on Points Feature[J]. Infrared and Laser Engineering, 2019, 48(5): 169-176.
    [8] 高胜, 陈昆, 张利巍, 等. 开架式观测型ROV定点悬停控制方法研究[J]. 石油机械, 2019, 47(2): 55-64.

    Gao Sheng, Chen Kun, Zhang Li-wei, et al. Control Method for Fixed Point Hovering of Open-shelf Observational ROV[J]. China Petroleum Machinery, 2019, 47(2): 55-64.
    [9] Trslic P, Rossi M, Robinson L, et al. Vision Based Au-tonomous Docking for Work Class ROVs[J]. Ocean Engineering, 2020, 196: 10684.
    [10] Shkurti F, Rekleitis I, Scaccia M, et al. State Estimation of an Underwater Robot Using Visual and Inertial Information[C]//IEEE/RSJ International Conference on Intel-ligent Robots & Systems. San Francisco: IEEE, 2011: 5054-5060.
    [11] Negahdaripour S, Xu X, Jin L. Direct Estimation of Mo-tion from Sea Floor Images for Automatic Station-keeping of Submersible Platforms[J]. IEEE Journal of Oceanic Engineering, 1999, 24(3): 370-382.
    [12] Wasielewski S, Aldon M J. Dynamic Vision for ROV Stabilization[C]//Oceans. USA: IEEE, 1996: 1082-1087.
    [13] Zwaan S, Santos-Victor J. An Ocean Odyssey. Conference Proceedings Real-time Vision-based Station Keeping for Underwater Robots[C]//Oceans. USA: IEEE, 2001: 1058- 1065.
    [14] Ferreira F. Comparing Region-based and Feature-based Methods for ROV Vision-based Motion Estimation[J]. IFAC Proceedings Volumes, 2012, 45(27): 91-96.
    [15] 马宏伟, 王佐勋. 机械臂视觉相机标定的研究与仿真[J]. 齐鲁工业大学学报, 2019, 33(4): 57-63.

    Ma Hong-wei, Wang Zuo-xun. Research and Simulation of Visual Camera Calibration of Manipulator[J]. Journal of Shandong Institute of Light Industry(Natural Science Edition), 2019, 33(4): 57-63.
    [16] 郝颖明, 吴清潇, 周船, 等. 基于单目视觉的水下机器人悬停定位技术与实现[J]. 机器人, 2006, 28(6): 656-661.

    Hao Ying-ming, Wu Qing-xiao, Zhou Chuan, et al. Technique and Implementation of Underwater Vehicle Station Keeping Based on Monocular Vision[J]. Robot, 2006, 28(6): 656-661.
    [17] Zhou Jie, Wang D K. Solving the Perspective-Three-Point Problem Using Comprehensive Gr?ner Systems[J]. Journal of Systems Science and Complexity, 2016, 29(5): 1446- 1471.
    [18] 王波, 胡浩, 张彩霞, 等. P3P问题多解现象的普遍性[J]. 中国科学: 信息科学, 2017, 47(4): 482-491.

    Wang Bo, Hu Hao, Zhang Cai-xia, et al. Generality of the Multi-solution Phenomenon in the P3P Problem[J]. Scientia Sinica: Informations, 2017, 47(4): 482-491.
    [19] 周鑫, 朱枫. 关于P3P问题解的唯一性条件的几点讨论[J]. 计算机学报, 2003, 26(12): 1696-1701.

    Zhou Xin, Zhu Feng. A Note on Unique Solution Condi-tions of the P3P Problem[J]. Chinese Journal of Computers, 2003, 26(12): 1696-1701.
  • 加载中
计量
  • 文章访问数:  134
  • HTML全文浏览量:  20
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 修回日期:  2020-10-21
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回
    服务号
    订阅号