• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声耦合无线电能传输技术研究综述

张林森 宁小玲 胡 平

张林森, 宁小玲, 胡 平. 超声耦合无线电能传输技术研究综述[J]. 水下无人系统学报, 2021, 29(3): 257-264. doi: 10.11993/j.issn.2096-3920.2021.03.002
引用本文: 张林森, 宁小玲, 胡 平. 超声耦合无线电能传输技术研究综述[J]. 水下无人系统学报, 2021, 29(3): 257-264. doi: 10.11993/j.issn.2096-3920.2021.03.002
ZHANG Lin-sen, NING Xiao-ling, HU Ping. A Review of Ultrasonic Coupled Contactless Energy Transfer Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 257-264. doi: 10.11993/j.issn.2096-3920.2021.03.002
Citation: ZHANG Lin-sen, NING Xiao-ling, HU Ping. A Review of Ultrasonic Coupled Contactless Energy Transfer Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 257-264. doi: 10.11993/j.issn.2096-3920.2021.03.002

超声耦合无线电能传输技术研究综述

doi: 10.11993/j.issn.2096-3920.2021.03.002
基金项目: 湖北省自然科学基金(2018CFC866).
详细信息
    通讯作者:

    宁小玲(1982-), 博士, 讲师, 主要研究方向为水下无线通信技术.

  • 中图分类号: TJ630.32 TM724

A Review of Ultrasonic Coupled Contactless Energy Transfer Technology

  • 摘要: 超声耦合无线电能传输(UCCET)是一种新型的无线电能传输技术。文中从UCCET技术的应用场景和优势入手, 分析了UCCET基本原理, 总结了其技术特点。随后着重从低功率和高功率应用两方面分别梳理了国内外UCCET技术在植入式医疗电子设备供电、隔金属介质设备供电、隔空气介质设备供电和隔水介质设备供电等方面的研究现状, 最后阐述了UCCET在声阻抗匹配、传输机理研究和换能器设计理论等方面面临的技术挑战。

     

  • [1] Leung H F, Willis B J, Hu A P. Wireless Electric Power Transfer Based on Acoustic Energy Through Conductive Media[C]//2014 9th IEEE Conference on Industrial Elec-tronics and Applications. Hangzhou, China: IEEE, 2014: 1555-1560.
    [2] 毕宏振. 基于压电换能器的无线能量传输系统研究[D]. 北京: 北京交通大学, 2019.
    [3] 吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559-1568.

    Wu Xu-sheng, Sun Pan, Yang Shen-qin, et al. Review on Underwater Wireless Power Transfer Technology and Its Application[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1559-1568.
    [4] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84.

    Cheng Shi-jie, Chen Xiao-liang, Wang Jun-hua, et al. Key Technologies and Applications of Wireless Power Transmission[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 68-84.
    [5] Karalis A, Joannopoulos J D, Soljacic M. Efficient Wire-less Nonradiative Mid-Range Energy Transfer[J]. Annals of Physics, 2008, 323(1): 34-48.
    [6] Kurs, André . Karalis, et al. Wireless Power Transfer Via Strongly Coupled Magnetic Resonances[J]. Science, 2007, 317(5834): 83-86.
    [7] 邹玉炜, 黄学良, 柏杨, 等. 基于PZT的超声波无接触能量传输系统的研究[J]. 电工技术学报, 2011, 26(9): 144-150.

    Zou Yu-wei, Huang Xue-liang, Bai Yang, et al. Research on Contactless Ultrasonic Energy Transfer System Based on PZT[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 144-150.
    [8] Cochran G V B, Johnson M W, Kadaba M P, et al. Piezo-electric Internal Fixation Devices: A New Approach to Electrical Augmentation of Osteogenesis[J]. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 1985, 3(4): 508-513.
    [9] Cochran G V B, Kadaba M P, Palmieri V R. External Ultrasound Can Generate Microampere Direct Currents in Vivo from Implanted Piezoelectric Materials[J]. Journal of Orthopaedic Research, 1988, 6(1): 145-147.
    [10] RamRakhyani A K, Mirabbasi S, Chiao M. Design and Optimization of Resonance-Based Efficient Wireless Power Delivery Systems for Biomedical Implants[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(1): 48-63.
    [11] Maleki T, Cao N, Song S H, et al. An Ultrasonically Powered Implantable Micro-Oxygen Generator(IMOG)[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(11): 3104-3111.
    [12] Yang Z, Zeng D, Wang H, et al. Harvesting Ultrasonic Energy Using 1-3 Piezoelectric Composites[J]. Smart Materials & Structures, 2015, 24(7): 075029.
    [13] Shmilovitz D, Ozeri S, Wang C C, et al. Noninvasive Control of the Power Transferred to an Implanted Device by an Ultrasonic Transcutaneous Energy Transfer Link [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(4): 995-1004.
    [14] Larson P J, Towe B C. Miniature Ultrasonically Powered Wireless Nerve Cuff Stimulator[C]//2011 5th International IEEE/EMBS Conference on Neural Engineering. Cancun, Mexico: IEEE, 2011.
    [15] Rosa B M G, Yang G Z. Active Implantable Sensor Pow-ered By Ultrasounds with Application in the Monitoring of Physiological Parameters for Soft Tissues[C]//2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks(BSN). San Francisco, CA, USA: IEEE, 2016: 318-323.
    [16] Sanni A, Vilches A, Toumazou C. Inductive and Ultra-sonic Multi-Tier Interface for Low-Power, Deeply Implantable Medical Devices[J]. IEEE Transactions on Bio-medical Circuits and Systems, 2012, 6(4): 297-308.
    [17] Sanni A, Vilches A. Powering Low-Power Implants Using PZT Transducer Discs Operated in the Radial Mode[J]. Smart Materials and Structures, 2013, 22(11):1-12.
    [18] Lee S Q, Youm W, Hwang G. Biocompatible Wireless Power Transferring Based on Ultrasonic Resonance Devices[J]. The Journal of the Acoustical Society of America, 2013, 133(5): 3268-3268.
    [19] 张春杨, 许佳琪, 张菁霓, 等. 心脏起搏器超声波体外无线充电技术研究[J]. 透析与人工器官, 2018, 29(1): 21-24.

    Zhang Chun-yang, Xu Jia-qi, Zhang Jing-ni, et al. Ultra-sonic in Vitro Wireless Charging Technology for Cardiac Pacemaker[J]. Chinese Journal of Dialysis and Artificial Organs, 2018, 29(1):21-24.
    [20] 李志坚, 庄甘霖, 吴朝晖, 等. 超声波无线能量传输系统建模[J]. 华南理工大学学报(自然科学版), 2018, 46 (3): 72-77.

    Li Zhi-jian, Zhuang Gan-lin, Wu Zhao-hui, et al. Modeling of Ultrasonic Wireless Electrical Energy Transfer System[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(3): 72-77.
    [21] Rosa B M G, Yang G Z. Ultrasound Powered Implants: Design, Performance Considerations and Simulation Results[J]. Scientific Reports, 2020,10: 1-16.
    [22] Shih P, Shih W. Design, Fabrication, and Application of Bio-Implantable Acoustic Power Transmission[J]. Journal of Microelectromechanical System, 2010, 19(3): 494-502.
    [23] 戴卫力, 费峻涛, 肖建康. 无线电能传输技术综述及应用前景[J]. 电气技术, 2010, 11(7): 1-6.

    Dai Wei-li, Fei Jun-tao, Xiao Jian-kang. An Overview and Application Prospect of Wireless Power Transmission Technology[J]. Electrical Engineering, 2010, 11(7): 1-6.
    [24] Mazzilli F, Peisino M, Mitouassiwou R, et al. Invitro Platform to Study Ultrasound as Source for Wireless Energy Transfer and Communication for Implanted Medical Devices[C]//2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: 3751-3754.
    [25] Cotté B, Lafon C, Dehollain C, et al. Theoretical Study for Safe and Efficient Energy Transfer to Deeply Implanted Devices Using Ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(8): 1674-1685.
    [26] 许康, 陈希有, 刘丹宁. 海下超声耦合无线电能传输系统电学阻抗变换技术[J]. 中国电机工程学报, 2015, 35 (17): 4461-4465.

    Xu Kang, Chen Xi-you, Liu Dan-ning. Electrical Impedance Transformation Techniques for an Ultrasonic Coupling Wireless Power Transfer System Under Sea Water[J]. Proceedings of the CSEE, 2015, 35(17): 4461-4465.
    [27] Kawanabe H, Katane T, Saotome H O. et al. Power and Information Transmission to Implanted Medical Device Using Ultrasonic[J]. Jpn. J. Appl. Phys., 2001, 40(5B): 3865-3868.
    [28] Arra S, Leskinen J, Heikkil?J, et al. Ultrasonic Power and Data Link for Wireless Implantable Applications[C]//2007 2nd International Symposium on Wireless Pervasive Computing. San Juan, PR, USA: IEEE, 2007: 567-571.
    [29] Bao X, Doty B J, Sherrit S, et al. Wireless Piezoelectric Acoustic-Electric Power Feedthru[C]//Proceedings Volume 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007. San Diego, CA, USA: SPIE, 2007: 6529-6533.
    [30] Sherrit S, Bao X, Badescu M, et al. 1 kW Power Transmission Using Wireless Acoustic-Electric Feedthrough (WAEF)[C]//11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach, CA, US: ASCE, 2008:1-10.
    [31] 赵鑫. 纵振式超声波无线电能传输装置仿真与实验[J]. 长春工业大学学报, 2017, 38(3): 251-255.

    Zhao Xin. Simulation and Experiment of Wireless Power Transmission Device with Longitudinal Ultrasonic Vibration[J]. Journal of Changchun University of Technology, 2017, 38(3): 251-255.
    [32] Graham D J, Neasham J A, Sharif B S, et al. Investigation of Methods for Data Communication and Power Delivery Through Metals[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4972-4980.
    [33] Lawry T J, Saulnier G J, Ashdown J D, et al. Penetration-free System for Transmission of Data and Power Through Solid Metal Barriers[C]//2011-MILCOM 2011 Military Communications Conference. Baltimore, MD, USA: IEEE, 2011: 389-395.
    [34] Lawry T J, Wilt K R, Ashdown J D, et al. A High-Per- formance Ultrasonic System for the Simultaneous Transmission of Data and Power Through Solid Metal Barriers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(1): 194-203.
    [35] 曾凡冲. 超声换能器的设计理论研究[D]. 北京: 北方工业大学, 2013.
  • 加载中
计量
  • 文章访问数:  250
  • HTML全文浏览量:  20
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2021-02-03
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回
    服务号
    订阅号