• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CAM矩阵的水下机器人容错控制方法

邱 帅 吕 瑞 范 辉 万亚民 黄 海 杨管金子

邱 帅, 吕 瑞, 范 辉, 万亚民, 黄 海, 杨管金子. 基于CAM矩阵的水下机器人容错控制方法[J]. 水下无人系统学报, 2021, 29(1): 104-110. doi: 10.11993/j.issn.2096-3920.2021.01.015
引用本文: 邱 帅, 吕 瑞, 范 辉, 万亚民, 黄 海, 杨管金子. 基于CAM矩阵的水下机器人容错控制方法[J]. 水下无人系统学报, 2021, 29(1): 104-110. doi: 10.11993/j.issn.2096-3920.2021.01.015
QIU Shuai, Lü Rui, FAN Hui, WAN Ya-min, HUANG Hai, YANG Guan-jin-zi. Fault-Tolerant Control Method for an Underwater Robot Based on the CAM Matrix[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 104-110. doi: 10.11993/j.issn.2096-3920.2021.01.015
Citation: QIU Shuai, Lü Rui, FAN Hui, WAN Ya-min, HUANG Hai, YANG Guan-jin-zi. Fault-Tolerant Control Method for an Underwater Robot Based on the CAM Matrix[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 104-110. doi: 10.11993/j.issn.2096-3920.2021.01.015

基于CAM矩阵的水下机器人容错控制方法

doi: 10.11993/j.issn.2096-3920.2021.01.015
详细信息
    作者简介:

    邱 帅(1995-), 男, 在读硕士, 主要研究方向为水下航行器制导技术.

  • 中图分类号: TJ630 TP302.8

Fault-Tolerant Control Method for an Underwater Robot Based on the CAM Matrix

  • 摘要: 针对水下机器人推进器出现故障后控制效果变差, 无法完成指定任务, 甚至可能造成机器人的丢失等问题, 文中提出一种基于控制分配机(CAM)矩阵的水下机器人容错控制方法。利用CAM矩阵重构推力分配确保机器人航行稳定, 同时使用序列二次规划方法寻找最大合力推力分配策略实现效率最大。通过仿真对所提方法进行有效性验证, 结果表明, 该容错控制方法能够处理推进器部分或完全失效故障并使机器人保持一定的性能稳定航行。

     

  • [1] 刘维新. 水下机器人推进器弱故障检测与预测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
    [2] 陈小龙. 自主式水下机器人容错控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
    [3] Corradini M L, Cristofaro A. A Nonlinear Fault-tolerant Thruster Allocation Architecture for Underwater Remotely Operated Vehicles[J]. IFAC-Papers on Line, 2016, 49(23): 285-290.
    [4] Podder T K, Sarkar N. Fault-tolerant Control of an Au-tonomous Underwater Vehicle under Thruster Redundancy[J]. Robotics and Autonomous Systems, 2001, 34(1): 39-52.
    [5] Omerdic E, Roberts G. Thruster Fault Diagnosis and Ac-commodation for Open-frame Underwater Vehicles[J]. Control Rngineering Practice, 2004, 12(12): 1575-1598.
    [6] 袁芳, 朱大奇, 叶银忠. 基于降阶卡尔曼滤波器的水下机器人滑模容错控制[J]. 控制与决策, 2011, 26(7): 1031-1035.

    Yuan Fang, Zhu da-qi, Ye Yin-zhong. Sliding-mode Fault-tolerant Control Method of Underwater Vehicle Based on Reduced-order Kalman Filter[J]. Control and Decision, 2011, 26(7): 1031-1035.
    [7] Liu X, Zhang M, Wang Y, et al. Design and Experimental Validation of an Adaptive Sliding Mode Observer-based Fault-tolerant Control for Underwater Vehicles[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2655-2662.
    [8] Soylu S, Buckham B J, Podhorodeski R P. A Chattering-free Sliding-mode Controller for Underwater Vehicles with Fault-tolerant Infinity-norm Thrust Allocation[J]. Ocean Engineering, 2008, 35(16): 1647-1659.
    [9] Xu R, Tang G, Huang D, et al. Adaptive Fault-tolerant Attitude Control for a CMG-based Underwater Vehicle[J]. Journal of Marine Science and Technology, 2019, 25(3): 1-8.
    [10] Li B, Dong W, Xiong C. Robust Actuator-fault-tolerant Control System Based on Sliding-mode Observer for Thrust-vectoring Aircrafts[J]. Asian Journal of Control, 2019, 21(1): 236-247.
    [11] Guo B, Chen Y. Adaptive Fast Sliding Mode Fault Tolerant Control Integrated with Disturbance Observer for Spacecraft Attitude Stabilization System[J]. ISA Transactions, 2019, 94: 1-9.
    [12] Zhu D, Liu Q, Hu Z. Fault-tolerant Control Algorithm of the Manned Submarine with Multi-thruster Based on Quantum-behaved Particle Swarm Optimisation[J]. International Journal of Control, 2011, 84(11): 1817-1829.
    [13] 褚振忠, 朱大奇. 基于自适应区域跟踪的自主式水下机器人容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 57-63.

    Chu Zhen-zhong, Zhu Da-qi. Fault-tolerant Control of Autonomous Underwater Vehicle Based on Adaptive Region Tracking[J]. Journal of Shandong University (Engineering Science), 2017, 47(5): 57-63.
    [14] Wang Y, Wilson P A, Liu X. Adaptive Neural Network-based Backstepping Fault Tolerant Control for Underwater Vehicles with Thruster Fault[J]. Ocean Engineering, 2015, 110: 15-24.
    [15] Hai H, Lei W, Chang W T, et al. A Fault-tolerable Control Scheme for an Open-frame Underwater Vehicle[J]. International Journal of Advanced Robotic Systems, 2014, 11(5): 77.
    [16] Ma L, Huang Y, Zhou L, et al. Fault Tolerant Control for a Class of Nonlinear System with Actuator Faults[EB/OL]. (2019-09-12)[2020-10-01]. https://onlinelibrary.wiley.co m/doi/full/10.1002/asjc.2225.
    [17] Wang W, Chen Y, Xia Y, et al. A Fault-tolerant Steering Prototype for X-rudder Underwater Vehicles[J]. Sensors, 2020, 20(7): 1816.
    [18] Yu Y, Wang H, Li N. Fault-tolerant Control for Over-actuated Hypersonic Reentry Vehicle Subject to Multiple Disturbances and Actuator Faults[J]. Aerospace Science and Technology, 2019, 87: 230-243.
    [19] García-Valdovinos L, Salgado-Jiménez T, Bandala-Sánchez M, et al. Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle[J]. International Journal of Advanced Robotic Systems, 2014, 11(1): 1-16.
    [20] Yuh J, Nie J. Application of Non-regressor-based Adaptive Control to Underwater Robots: Experiment[J]. Com-puter & Electrical Engineering, 2000, 26: 169-179.
  • 加载中
计量
  • 文章访问数:  238
  • HTML全文浏览量:  20
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 修回日期:  2020-11-19
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回
    服务号
    订阅号