• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下含大比例不凝气体的水蒸气对流冷凝数值仿真

耿少航 党建军 赵 佳 张佳楠 孙军亮 秦 侃

耿少航, 党建军, 赵 佳, 张佳楠, 孙军亮, 秦 侃. 高压下含大比例不凝气体的水蒸气对流冷凝数值仿真[J]. 水下无人系统学报, 2021, 29(1): 088-96. doi: 10.11993/j.issn.2096-3920.2021.01.013
引用本文: 耿少航, 党建军, 赵 佳, 张佳楠, 孙军亮, 秦 侃. 高压下含大比例不凝气体的水蒸气对流冷凝数值仿真[J]. 水下无人系统学报, 2021, 29(1): 088-96. doi: 10.11993/j.issn.2096-3920.2021.01.013
GENG Shao-hang, DANG Jian-jun, ZHAO Jia, ZHANG Jia-nan, SUN Jun-liang, QIN Kan. Numerical Simulation of Convective Condensation of Steam with Large Proportion of Non-condensable Gas under High Pressure[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 088-96. doi: 10.11993/j.issn.2096-3920.2021.01.013
Citation: GENG Shao-hang, DANG Jian-jun, ZHAO Jia, ZHANG Jia-nan, SUN Jun-liang, QIN Kan. Numerical Simulation of Convective Condensation of Steam with Large Proportion of Non-condensable Gas under High Pressure[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 088-96. doi: 10.11993/j.issn.2096-3920.2021.01.013

高压下含大比例不凝气体的水蒸气对流冷凝数值仿真

doi: 10.11993/j.issn.2096-3920.2021.01.013
基金项目: 国家自然科学基金(51805435); 陕西省中央高校基本科研业务费资助项目(2019JQ-159).
详细信息
    作者简介:

    耿少航(1996-), 男, 在读硕士, 主要研究方向为水下热动力系统建模与仿真.

  • 中图分类号: TJ630.1 TB71.2

Numerical Simulation of Convective Condensation of Steam with Large Proportion of Non-condensable Gas under High Pressure

  • 摘要: 为适用于大航深的水下航行器热动力系统中含不凝气体的水蒸气对流冷凝换热现象进行数值仿真。首先通过定义连续性方程、动量方程、组分输运方程和能量方程的源项对冷凝过程进行建模, 仿真了经典Kuhn试验工况以验证数值模型的有效性, 结果与试验数据对比良好, 换热系数最大误差小于20%。在此基础上, 对10 MPa压力下不同比例水蒸气和不凝气体冷凝换热过程进行数值仿真, 在仿真中考虑了冷凝液膜的影响, 从热流密度、液膜厚度、饱和温度及冷凝质量流量4个方面分析了高压下不凝气体对水蒸气对流冷凝换热的影响。仿真结果表明: 当不凝气体质量分数达到30%时, 水蒸气冷凝换热的平均热流密度仅减小50%。与经典文献中常压下含不凝气体的水蒸气冷凝换热研究对比, 可知高压下不凝气体对水蒸气换热的抑制作用被削弱。

     

  • [1] 中国海洋研究委员会. 走向深远海[M]. 北京: 海洋出版社, 2013.
    [2] 张佳楠. 一种基于HAP三组元燃料的新型热动力系统研究[D]. 西安: 西北工业大学, 2017。
    [3] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
    [4] Akaki H, Kataoka Y, Murase M. Measurement of Condensation Heat Transfer Coefficient inside a Vertical Tube in the Presence of Noncondensable Gas[J]. Journal of Nuclear Science and Technology, 1995, 32(6): 517-526.
    [5] Revankar S T, Pollock D. Laminar Film Condensation in a Vertical Tube in the Presence of Noncondensable Gas[J]. Applied Mathematical Modelling, 2005, 29(4): 341-359.
    [6] Kuhn S Z. Investigation of Heat Transfer from Condensing Steam-gas Mixtures and Turbulent Films Flowing Downward inside a Vertical Tube[D]. Berkeley: University of California, 1995.
    [7] Siddipue M. The Effects of Noncondensable Gases on Steam Condensation under Forced Convection Conditions[D]. Cambridge: Massachusetts Institute of Technology, 1992.
    [8] Park S K, Kim M H, Yoo K J. Effects of a Wavy Interface on Steam-air Condensation on a Vertical Surface[J]. International Journal of Multiphase Flow, 1997, 23(6): 1031-1042.
    [9] Zhang T Y, Mou L W, Zhang J Y. A Visualized Study of Enhanced Steam Condensation Heat Transfer on a Honeycomb-like Microporous Superhydrophobic Surface in the Presence of a Non-condensable Gas[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119352.
    [10] Ji D Y, Lee J W, Kim D. Effective Reduction of Non-condensable Gas Effects on Condensation Heat Transfer: Surface Modification and Steam Jet Injection[J]. Applied Thermal Engineering, 2020, 174: 115264.
    [11] Fu W, Li X W, Wu X X. Numerical Investigation of Convective Condensation with the Presence of Non-condensable Gases in a Vertical Tube[J]. Nuclear Engineering and Design, 2016, 297: 197-207.
    [12] Li J D. CFD Simulation of Water Vapor Condensation in the Presence of Non-condensable Gas in Vertical Cylindrical Condensers[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 708-721.
    [13] Punethal M, Khandekar S. A CFD Based Modelling Approach for Predicting Steam Condensation in the Presence of Non-condensable Gases[J]. Nuclear Engineering and Design, 2017, 324(3): 280-296.
    [14] Alshehri A, Andalib S, Kavehpour H P. Numerical Modeling of Vapor Condensation over a Wide Range of Non-condensable Gas Concentrations[J]. International Journal of Heat and Mass Transfer, 2020, 151: 1-9.
    [15] Ansys Inc.. Ansys Fluent User’s Guide[M]. Pittsburgh: Ansys Inc., 2009.
    [16] Bird R B, Stewart W E L, Edwin N. Transport Phenomena[M]. New York: John Wiley & Sons, 1960.
    [17] Reid R C, Prausnitz J M, Poling B E. The Properties of Gases and Liquid[M]. New York: McGraw Hill Book, 1987.
    [18] Peterson P F, Tien C L. Miniature Wet-bulb Technique for Measuring Gas Concentrations in Condensing or Evaporating Systems[J]. Experimental Heat Transfer, 1987, 1(1): 1-15.
    [19] 朱长新, 章燕谋. 空气存在时水平螺旋管外膜状凝结换热的试验研究[J]. 动力工程学报, 1991, 11(4): 10-16.

    Zhu Chang-xin, Zhang Yan-mou. Experimental Study on Film Condensation Heat Transfer of Horizontal Spiral Tube in the Presence of Air[J]. Journal of Chinese Society of Power Engineering, 1991, 11(4): 10-16.
    [20] Kim J W, Lee Y G , Ahn H K. Condensation Heat Transfer Characteristic in the Presence of Noncondensable Gas on Natural Convection at High Pressure[J]. Nuclear Engineering and Design, 2009, 239(4): 688-698.
  • 加载中
计量
  • 文章访问数:  173
  • HTML全文浏览量:  5
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-08-16
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回
    服务号
    订阅号