• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CPG和模糊控制的机器鱼定向游动精确控制方法

和岩辉 胡 桥 王朝晖 余 雷 陈振汉 李怡昕

和岩辉, 胡 桥, 王朝晖, 余 雷, 陈振汉, 李怡昕. 基于CPG和模糊控制的机器鱼定向游动精确控制方法[J]. 水下无人系统学报, 2021, 29(1): 039-47. doi: 10.11993/j.issn.2096-3920.2021.01.006
引用本文: 和岩辉, 胡 桥, 王朝晖, 余 雷, 陈振汉, 李怡昕. 基于CPG和模糊控制的机器鱼定向游动精确控制方法[J]. 水下无人系统学报, 2021, 29(1): 039-47. doi: 10.11993/j.issn.2096-3920.2021.01.006
HE Yan-hui, HU Qiao, WANG Chao-hui, YU Lei, CHEN Zhen-han, LI Yi-xin. Precise Control Method for Directional Swimming of a Robotic Fish Based on CPG and Fuzzy Control[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 039-47. doi: 10.11993/j.issn.2096-3920.2021.01.006
Citation: HE Yan-hui, HU Qiao, WANG Chao-hui, YU Lei, CHEN Zhen-han, LI Yi-xin. Precise Control Method for Directional Swimming of a Robotic Fish Based on CPG and Fuzzy Control[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 039-47. doi: 10.11993/j.issn.2096-3920.2021.01.006

基于CPG和模糊控制的机器鱼定向游动精确控制方法

doi: 10.11993/j.issn.2096-3920.2021.01.006
基金项目: 国家自然科学基金重大项目(61890961); 装备预研领域基金项目(61404160503, 61402070304); 陕西省重点研发计划重点项目资助(2018ZDXM-GY-111).
详细信息
    作者简介:

    和岩辉(1995-), 男, 在读硕士, 研究方向为水下仿生机器人控制技术.

  • 中图分类号: TP242 TP273.4

Precise Control Method for Directional Swimming of a Robotic Fish Based on CPG and Fuzzy Control

  • 摘要: 机器鱼在水下执行探测等作业任务时, 其游动方向的精准性会受到波浪、漩涡等因素的影响, 致使其无法完成相应任务。为解决机器鱼游动方向的精准性问题, 文中基于中枢模式发生器(CPG)理论结合模糊控制器提出了一种可以实现仿鲹科机器鱼定向游动的精确控制方法。首先利用Hopf振荡器构建基于极限环的机器鱼CPG模型, 在机器鱼游动前期, 采用小摆幅高频率的CPG控制信号以获得较大推进力, 后期则采取大摆幅低频率的CPG信号实现稳定游动; 然后, 根据姿态传感器获取机器鱼的航姿角度信息, 利用模糊控制器实时修正机器鱼与目标方向的偏差。通过机器鱼的定向游动及抗干扰试验, 验证了该方法的可行性和有效性, 表明其在机器鱼进行复杂环境下精准方向游动中具有广阔的应用前景。

     

  • [1] 范增, 王扬威, 刘凯. 仿生机器鱼胸鳍波动与摆动融合推进机制建模及实验研究[J]. 水下无人系统学报, 2019, 27(2): 166-173.

    Fan Zeng, Wang Yang-wei, Liu Kai. Modeling and Experimental Research of Integrating Propulsion Mechanism of Pectoral Fin’s Fluctuation and Swing for the Biomimetic Robotic Fish[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 166-173.
    [2] Yu J, Li X, Pang L, et al. Design and Attitude Control of a Novel Robotic Jellyfish Capable of 3D Motion[J]. Science China Information Sciences, 2019, 62(9): 182-184.
    [3] Yu J, Wu Z, Wang M, et al. CPG Network Optimization for a Biomimetic Robotic Fish via PSO[J]. Neural Networks and Learning Systems, IEEE Transactions on, 2016, 27(9): 1962-1968.
    [4] Cao Y, Lu Y, Cai Y, et al. CPG-fuzzy-based Control of a Cownose-ray-like Fish Robot[J]. Industrial Robot: An International Journal, 2019, 46(6): 779-791.
    [5] Yu J, Tan M. Leaping Control of Self-propelled Robotic Dolphin[M]//Motion Control of Biomimetic Swimming Robots. New York: Springer, 2020.
    [6] Shi R, Zhang X, Tian Y, et al. A CPG-based Control Method for the Rolling Locomotion of a Desert Spider[C]//Advanced Robotics & Its Social Impacts. Shanghai, China: IEEE, 2016.
    [7] Yang Y, Wang J, Wu Z, et al. Fault-Tolerant Control of a CPG-Governed Robotic Fish[J]. Engineering: English, 2018, 4(6): 861-868.
    [8] Hu Y, Zhang S, Liang J, et al. Development and CPG-based Control of a Biomimetic Robotic Fish with Advanced Underwater Mobility[C]//IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 813-818.
    [9] Tangorra J L, Mignano A P, Carryon G N, et al. Biologically Derived Models of the Sunfish for Experimental Investigations of Multi-fin Swimming[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011: 580-587.
    [10] Yu J, Wang M, Dong H, et al. Motion Control and Motion Coordination of Bionic Robotic Fish: A Review[J]. Journal of Bionic Engineering, 2018, 15(4): 579-598.
    [11] Huang J, Gong X, Wang Z, et al. The Kinematics Analysis of Webbed Feet during Cormorants’ Swimming[C]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, China: IEEE, 2018: 256-263.
    [12] Zheng X, Wang C, Fan R, et al. Artificial Lateral Line Based Local Sensing between Two Adjacent Robotic Fish[J]. Bioinspiration & Biomimetics, 2017, 13(1): 326-334.
    [13] Prasad M P R, Aminur A M R B. Development of Controller for Robotic Fish[M]//Lecture Notes in Civil Engineering. New York: Springer, 2019.
    [14] Bonnet F, Mondada F. FishBot, the Fast Miniature Wheeled Mobile Robot[M]//Springer Tracts in Advanced Robotics. New York: Springer, 2019.
    [15] Xia X, Li T. A Fuzzy Control Model Based on BP Neural Network Arithmetic for Optimal Control of Smart City-Facilities[J]. Personal and Ubiquitous Computing, 2019, 23(3-4): 453-463.
    [16] Dourado A D P, Lobato F S, Cavalini A A, et al. Fuzzy Reliability-Based Optimization for Engineering System Design[J]. International Journal of Fuzzy Systems, 2019, 21: 33-34.
    [17] Zhou Z J, Wang X S, Wang Y. Spacecraft Attitude Control Based on Fuzzy Adaptive Algorithm[J]. Dianji Yu Kongzhi Xuebao/Electric Machines & Control, 2019, 23(2): 123-128.
  • 加载中
计量
  • 文章访问数:  282
  • HTML全文浏览量:  21
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-05-18
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回
    服务号
    订阅号