• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于super-twisting二阶滑模算法的作业型ROV路径跟踪控制方法

黄博伦 杨 启

黄博伦, 杨 启. 基于super-twisting二阶滑模算法的作业型ROV路径跟踪控制方法[J]. 水下无人系统学报, 2021, 29(1): 014-22. doi: 10.11993/j.issn.2096-3920.2021.01.003
引用本文: 黄博伦, 杨 启. 基于super-twisting二阶滑模算法的作业型ROV路径跟踪控制方法[J]. 水下无人系统学报, 2021, 29(1): 014-22. doi: 10.11993/j.issn.2096-3920.2021.01.003
HUANG Bo-lun, YANG Qi. Trajectory Tracking Control Method of a Work-class ROV Based on a Super-twisting Second-order Sliding Mode Controller[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 014-22. doi: 10.11993/j.issn.2096-3920.2021.01.003
Citation: HUANG Bo-lun, YANG Qi. Trajectory Tracking Control Method of a Work-class ROV Based on a Super-twisting Second-order Sliding Mode Controller[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 014-22. doi: 10.11993/j.issn.2096-3920.2021.01.003

基于super-twisting二阶滑模算法的作业型ROV路径跟踪控制方法

doi: 10.11993/j.issn.2096-3920.2021.01.003
基金项目: 国家重点研发计划项目资助(2017YFC0306704).
详细信息
    作者简介:

    黄博伦(1989-), 男, 在读博士, 主要研究方向为水下机器人控制技术.

  • 中图分类号: TJ630 TB53

Trajectory Tracking Control Method of a Work-class ROV Based on a Super-twisting Second-order Sliding Mode Controller

  • 摘要: 作业型遥控无人水下航行器(ROV)的运动存在时变外界干扰和系统不确定性, 利用常规滑模方法设计其运动控制器会产生抖振现象, 而常用的饱和函数联合边界层法(SatSMC)在消除抖振的同时无法保证控制精度。针对上述问题, 文中设计了super-twisting二阶滑模控制器(STSMC)来实现作业型ROV的空间路径跟踪。利用Lyapunov方法分析了系统的稳定性, 并证明该方法能够保证跟踪误差在有限时间内收敛。将提出的STSMC与SatSMC及比例-积分-微分法进行了仿真试验对比, 结果表明: STSMC能够使ROV完成对既定路径的跟踪, 并具有更好的鲁棒性、快速性和控制精度, 同时产生的抖振也明显小于SatSMC, 控制参数也未增加, 更适于ROV的实际使用。

     

  • [1] Schjølberg I, Utne I B. Towards Autonomy in ROV Operations[J]. IFAC Papers On Line, 2015, 48(2): 183-188.
    [2] Ludvigsen M, S?ensen A J. Towards Integrated Autonomous Underwater Operations for Ocean Mapping and Monitoring[J]. Annual Reviews in Control, 2016, 42: 145-157.
    [3] Maalouf D, Chemori A, Creuze V. L1 Adaptive Depth and Pitch Control of an Underwater Vehicle with Real-Time Experiments[J]. Ocean Engineering, 2015, 98: 66-77.
    [4] Hoang N Q, Kreuzer E. Adaptive PD-controller for Positioning of a Remotely Operated Vehicle Close to an Underwater Structure: Theory and Experiments[J]. Control Engineering Practice, 2007, 15(4): 411-419.
    [5] Anderlini E, Parker G G, Thomas G. Control of a ROV Carrying an Object[J]. Ocean Engineering, 2018, 165: 307-318.
    [6] Huang B, Yang Q. Double-loop Sliding Mode Controller with a Novel Switching Term for the Trajectory Tracking of Work-class ROVs[J]. Ocean Engineering, 2019, 178: 80-94.
    [7] Baldini A, Ciabattoni L, Felicetti R, et al. Dynamic Surface Fault Tolerant Control for Underwater Remotely Operated Vehicles[J]. ISA Trans, 2018, 78: 10-20.
    [8] Chu Z, Zhu D, Yang S X, et al. Adaptive Sliding Mode Control for Depth Trajectory Tracking of Remotely Operated Vehicle with Thruster Nonlinearity[J]. Journal of Navigation, 2016, 70(1): 149-164.
    [9] 严浙平, 李响, 宋育武, 等. 参数摄动下基于积分滑模的欠驱动UUV轨迹跟踪控制方法[J]. 水下无人系统学报, 2018, 26(3): 18-24.

    Yan Zhe-ping, Li Xiang, Song Yu-wu, et al. Trajectory Tracking Control Method for Underactuated UUV Using Integral Sliding Mode under Parameter Perturbation[J]. Journal of Unmanned Undersea System, 2018, 26(3): 18-24.
    [10] 杨超, 郭佳, 张铭钧. 基于RBF神经网络的作业型AUV自适应终端滑模控制方法及实验研究[J]. 机器人, 2018, 40(3): 82-91.

    Yang Chao, Guo Jia, Zhang Ming-jun. Adaptive Terminal Sliding Mode Control Method Based on RBF Neural Network for Operational AUV and Its Experimental Re-search[J]. Robot, 2018, 40(3): 82-91.
    [11] 向先波, 陈彦彬, 杨少龙, 等. 基于联合操舵的水下航行器幂次滑模定深控制[J]. 华中科技大学学报: 自然科学版, 2018, 46(12): 126-30.

    Xiang Xian-bo, Chen Yan-bing, Yang Shao-long, et al. Jointed Steering Depth Control of Underwater Vehicle Based on Power Reaching Sliding Mode Algorithm[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2018, 46(12): 126-130.
    [12] Huo X, Ge T, Wang X. Horizontal Path Following Control for Deep Sea Work Class ROVs Based on a Fuzzy Logic System[J]. Ships and Offshore Structures, 2018, 13(6): 637-648.
    [13] Chu Z, Zhu D, Jan G E. Observer-Based Adaptive Neural Network Control for a Class of Remotely Operated Vehicles[J]. Ocean Engineering, 2016, 127: 82-89.
    [14] Chu Z, Zhu D, Yang S X. Observer-Based Adaptive Neural Network Trajectory Tracking Control for Remotely Operated Vehicle[J]. IEEE Transactions on Neural Networks Learning Systems, 2017, 28(7): 1633-1645.
    [15] Qiao L, Yi B, Wu D, et al. Design of Three Exponentially Convergent Robust Controllers for the Trajectory Tracking of Autonomous Underwater Vehicles[J]. Ocean Engineering, 2017, 134: 157-172.
    [16] Dai P, Lu W, Le K, et al. Sliding Mode Impedance Control for Contact Intervention of an I-AUV: Simulation and Experimental Validation[J]. Ocean Engineering, 2020, 196: 106855.
    [17] Slotine J J E, Li W P. Applied Nonlinear Control[M]. Beijing: China Machine Press, 2004.
    [18] Levant A. Homogeneity Approach to High-order Sliding Mode Design[J]. Automatica, 2005, 41(5): 823-830.
    [19] Casta?da H, Salas-Pe? O S, León-Morales D J. Ex-tended Observer Based on Adaptive Second Order Sliding Mode Control for a Fixed Wing UAV[J]. ISA Transactions, 2017, 66: 226-232.
    [20] Tuan L A, Joo Y H, Tien L Q, et al. Adaptive Neural Network Second-Order Sliding Mode Control of Dual Arm Robots[J]. International Journal of Control, Automation and Systems, 2017, 15(6): 2883-2891.
    [21] Liang D, Li J, Qu R, et al. Adaptive Second-Order Sliding-Mode Observer for PMSM Sensorless Control Considering VSI Nonlinearity[J]. 2017, 33(10): 8994-9004.
    [22] Fossen T I. Guidance and Control of Ocean Vehicles[M]. New York, USA: John Wiley & Sons Inc, 1994.
    [23] Lakhekar G V, Waghmare L M, Roy R G. Disturbance Observer-Based Fuzzy Adapted S-Surface Controller for Spatial Trajectory Tracking of Autonomous Underwater Vehicle[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(4): 622-36.
    [24] Bhat S P, Bernstein D S. Continuous Finite-time Stabilization of the Translational and Rotational Double Integrators[J]. IEEE Transactions on Automatic Control AC, 1998, 43(4): 678-681.
  • 加载中
计量
  • 文章访问数:  1018
  • HTML全文浏览量:  122
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-13
  • 修回日期:  2020-04-23
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回
    服务号
    订阅号