• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国外水下涡流探测技术研究进展

何心怡 程善政 卢 军 祝 琳

何心怡, 程善政, 卢 军, 祝 琳. 国外水下涡流探测技术研究进展[J]. 水下无人系统学报, 2021, 29(1): 001-5. doi: 10.11993/j.issn.2096-3920.2021.01.001
引用本文: 何心怡, 程善政, 卢 军, 祝 琳. 国外水下涡流探测技术研究进展[J]. 水下无人系统学报, 2021, 29(1): 001-5. doi: 10.11993/j.issn.2096-3920.2021.01.001
HE Xin-yi, CHENG Shan-zheng, LU Jun, ZHU Lin. Research Progress in Foreign Underwater Vortex Detection Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 001-5. doi: 10.11993/j.issn.2096-3920.2021.01.001
Citation: HE Xin-yi, CHENG Shan-zheng, LU Jun, ZHU Lin. Research Progress in Foreign Underwater Vortex Detection Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 001-5. doi: 10.11993/j.issn.2096-3920.2021.01.001

国外水下涡流探测技术研究进展

doi: 10.11993/j.issn.2096-3920.2021.01.001
详细信息
    作者简介:

    何心怡(1976-), 男, 博士, 正高级工程师, 主要研究方向为水中兵器、水声信号处理技术.

  • 中图分类号: TJ630.3 TN973.3

Research Progress in Foreign Underwater Vortex Detection Technology

  • 摘要: 受复杂海洋环境以及不断提升的潜艇隐蔽性能的影响, 为了进一步提高探潜能力, 开展新型非声探测技术迫在眉睫。基于此, 文中综述了国外在水下涡流探测技术领域的研究进展, 阐述了潜艇涡流生成机理及探测可行性。通过对比水下涡流仿生探测技术、基于粒子图像测速的探测技术以及激光探测技术的特点可知, 水下涡流激光探测技术以其非接触、灵敏度高、结构简单等特点, 具有良好的发展潜力, 值得深入研究。

     

  • [1] 于宪钊, 白旭尧. 美国水下作战革命: 非声探测使水下作战更复杂[EB/OL]. (2015-11-18)[2020-12-24]. http: //ocean.china.com.cn/2015-11/18/content_37093613.htm.
    [2] Zhang S, Yang Z, Yang L. Multi-directional Infrared Imaging Characterization of Ship Kelvin Wake[C]//IEEE Computer Society. Xi’an, China: IEEE, 2012: 144-146.
    [3] Zilman G, Zapolski A, Marom M. The Speed and Beam of A Ship from Its Wake’s SAR Images[J]. IEEE Trans. Geosci. Remote Sens., 2002, 42: 2335-2343.
    [4] Xu Z H, Du C P, Xia M Y. Evaluation of Electromagnetic Fields Induced by Wake of an Undersea-moving Slender Body[J]. IEEE Access, 2018, 6: 2943-2951.
    [5] Beardsley, Tim. Making waves[J]. Scientific American, 1993, 268(2): 32.
    [6] 武宁, 李伟, 穆连运. 基于潜艇涡流场检测技术的潜艇探潜效能分析[J]. 舰船电子工程, 2017, 37(1): 111-114.

    Wu Ning, Li Wei, Mu Lian-yun. Antisubmarine Detection Efficiency Analysis of Submarine Based on the Testing Technology of Submarine Eddy Current[J]. Ship Electronic Engineering, 2017, 37(1): 111-114.
    [7] 张军, 张效慈, 赵峰, 等. 源于水动力学的潜艇尾迹非声探测技术研究之进展[J]. 船舶力学, 2003, 7(2): 121-128.

    Zhang Jun, Zhang Xiao-ci, Zhao Feng, et al. Progress of Investigation on Non-acoustic Detection for Submarine Wake Originated from Naval Hydrodynamics[J]. Journal of Ship Mechanics Echanics, 2003, 7(2): 121-128.
    [8] Lin J T, Pao Y H. Wakes in Stratified Fluids[J]. Annual Review of Fluid Mechanics, 1979, 11: 317-338.
    [9] Voropayev S I, Smirnov S A. Vortex Streets Generated by A Moving Momentum Source in a Stratified Fluid[J]. Physics of Fluids, 2003, 15(3): 618-624.
    [10] Li E, Alin N, Fureby C. Computational Study of Wakes behind Submarines and Surface Ships[R]. Swedish Defense Research Agency, Tumba. Weapons and Protection Div, 2000: 1-31.
    [11] Yashodhararao A, Rao A S, Rao A S. Dynamics of Fluid Flow Around Aerofoil, and Submarine: Effect of Winglets, the International Journal of Engineering and Science [EB/OL].(2013-02-01)[2020-11-11]. http://www.Theijes. com/index.html.
    [12] 李文. 海豹“胡须技术”或将成潜艇“杀手”[EB/OL]. (2018-08-21)[2020-12-20].http://military.people.com.cn/n1/2018/0821/c1011-30241234.html.
    [13] Eberhardt W C, Wakefield B F, Murphy C T, et al. Development of an Artificial Sensor for Hydrodynamic Detection Inspired by a Seal’s Whisker Array[J]. Bioinspiration & Biomimetics, 2016, 11(5): 056011.
    [14] Hadar B G, Alex L, Roi G. A Stratified Wake of a Hydrofoil Accelerating from Rest[J]. Experimental Thermal and Fluid Science, 2016, 70: 366-380.
    [15] Swain S K, Trinath K, Tatavarti. Non-Acoustic Detection of Moving Submerged Bodies in Ocean[J]. International Journal of Innovative Research & Development, 2012, 1(10): 361-372.
  • 加载中
计量
  • 文章访问数:  469
  • HTML全文浏览量:  57
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 修回日期:  2021-01-10
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回
    服务号
    订阅号