• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于包络信号的轴频电场深度换算方法

靳 雄 姜润翔 程锦房 陈新刚

靳 雄, 姜润翔, 程锦房, 陈新刚. 基于包络信号的轴频电场深度换算方法[J]. 水下无人系统学报, 2020, 28(4): 403-409. doi: 10.11993/j.issn.2096-3920.2020.04.008
引用本文: 靳 雄, 姜润翔, 程锦房, 陈新刚. 基于包络信号的轴频电场深度换算方法[J]. 水下无人系统学报, 2020, 28(4): 403-409. doi: 10.11993/j.issn.2096-3920.2020.04.008
JIN Xiong, JIANG Run-xiang, CHENG Jin-fang, CHEN Xin-gang. A Depth Conversion Method of Shaft-Rate Electric Field Based on Envelope Signal[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 403-409. doi: 10.11993/j.issn.2096-3920.2020.04.008
Citation: JIN Xiong, JIANG Run-xiang, CHENG Jin-fang, CHEN Xin-gang. A Depth Conversion Method of Shaft-Rate Electric Field Based on Envelope Signal[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 403-409. doi: 10.11993/j.issn.2096-3920.2020.04.008

基于包络信号的轴频电场深度换算方法

doi: 10.11993/j.issn.2096-3920.2020.04.008
基金项目: 青岛海洋科学与技术国家实验室“问海计划”项目.
详细信息
    作者简介:

    靳 雄(1991-), 男, 在读硕士, 主要研究方向为目标特性及信息感知技术.

  • 中图分类号: U674.70 TP274

A Depth Conversion Method of Shaft-Rate Electric Field Based on Envelope Signal

  • 摘要: 在仅利用水平时谐电偶极子对舰船轴频电场信号进行换算时, 存在近场深度误差较大的问题。文中首先在仿真数据的基础上, 明确了船体表面不同位置电流密度与轴地电阻值波动时的变化规律; 其次, 提出了基于包络信号的轴频电场深度换算方法, 该方法在希尔伯特(Hilbert)变换计算轴频电场信号包络的基础上, 将轴频电场近场的深度换算问题转化为包络信号等效静电场的近场换算问题, 并利用点电荷模型建立了轴频电场信号包络在“空气—海水—海床”3层介质条件下的正演及反演模型。最后, 分别利用4种阴极防腐状态下的船模试验数据对所提方法的有效性进行了检验, 结果表明, 所提方法能够较好地实现对轴频电场信号包络值的准确换算, 以相对均方根误差作为评价准则, 水深为1倍船模宽度的换算误差小于15%。文中方法可为舰船近场的轴频电场反演提供新的途径。

     

  • [1] Bostick F, Smith H, Boehl J. The Detection of ULF–ELF Emissions from Moving Ships[R].New York: State Academic Educational Institutions, 1977: 13-24..
    [2] Dymarkowski K, Uczciwek J. The Extremely Low Frequency Electromagnetic Signature of the Electric Field of the Ship[C]//Underwater Defence Technology Conference, London: IEEE, 2001, 1-6.
    [3] Zolotarevskii Y, Bulygin F, Ponomarev A, et al.Methods of Measuring the Low-frequency Electric and Magnetic Fields of Ships[J].Measurement Techniques, 2005, 48(11): 1140-1144.
    [4] Lü X C, Chen H Q, Ma S J, et al.The Electromagnetic Fi- eld Generated by Time-harmonic Electric Current Element in Shallow Sea[C]//Hardy T, Undersea Defence Techno- logy, Hamburg: IEEE, 2006.
    [5] Jia Y Z, Jiang R , Gong S G.Research on Wavelet Modulus Maximum-based Detection Algorithm of Ship’s Shaft-rate Electric Field[J].Acta Armamentarii, 2013, 34(5): 579-584.
    [6] Gheorghe S, Serghei R, Camelia C. Mesurements of Electrical and Magnetic Fields on Board Container Ships[C]//Proceedings of the Scientific Conference AFASES. Brasov. Rumania: Air Force Academy: 2013.
    [7] 贾亦卓, 姜润翔, 龚沈光.基于小波模极大值的船舶轴频电场检测算法研究[J].兵工学报, 2013, 34(5): 579-584.

    Jia Yi-zhuo, Jiang Run-xiang, Gong Shen-guang.Research on Wavelet Modulus Maximum-based Detection Algori-thm of Ship’s Shaft-rate Electric Field[J]. Acta Electronica Sinica, 2013: 34(5): 549-584.
    [8] 程锐, 姜润翔, 龚沈光.船舶轴频电场等效源强度计算[J].国防科技大学学报, 2016, 38(2): 138-143.

    Cheng Rui, Jiang Run-xiang, Gong Shen-guang. Calculation Method of Vessel’s Shaft Rate Electric Field Equivalent Source Magnitude[J]. Journal of National University of Defense Technology, 2016, 38(2): 138-143.
    [9] Daya Z A, Hutt D L, Richards Troy C. Maritime Electromagnetism and DRDC Management Research[R].Canada: Defence R&D Canada, 2005: 23-25.
    [10] 熊露, 王斌, 毕晓文. 舰船轴频电场场源建模和实验研究[J]. 武汉理工大学学报, 2015, 37(7): 52-56.

    Xiong Lu, Wang Bin, Bi Xiao-wen. Modeling and Experimental Study of Ship’s Axial Frequency Electric Field Source[J]. Journal of Wuhan University of Technology, 2015, 37(7): 52-56.
    [11] 林春生, 龚沈光.舰船物理场[M].北京: 兵器工业出版社, 2007.
    [12] Howard L C, Ballston L N. Naval Electro-chemical Corrosion Reducer: United States: 5052962[P]. 1990-10-1.
    [13] 姜润翔, 林春生, 龚沈光.基于点电荷模型的舰船静电场反演算法研究[J].兵工学报, 2015, 36(3): 545-551.

    Jiang Run-xiang, Lin Chun-sheng, Gong Shen-guang. Electrostatic Electric Field Inversion Method for Ship Based on Point Charge Source Model[J]. Acta Electronica Sinica, 2015: 36(3): 545-551.
    [14] Parks A R, Thomas E D, Lucas K E. Physical Scale Modeling Verification with Shipboard Trials[J]. Material Performance, 1991, 30(5): 26-29.
    [15] 邢少华, 张搏, 闫永贵, 等.涂层破损对船体阴极保护电位分布的影响[J]. 材料开发与应用, 2016, 31(1): 69-73.

    Xing Shao-hua, Zhang Bo, Yan Yong-gui, et al.The Influence of Coating Damage on Cathodic Protection Potential Distribution of Ship[J]. Development and Application of Materials, 2016, 31(1): 69-73.
    [16] DeGiorgi V G, Thomas E D II, Lucas K E, et al. A Combined Design Methodology for Impressed Current Cathodic Protection Systems[J]. Boundary Element Technology, 1996, 12(14): 335-344.
  • 加载中
计量
  • 文章访问数:  276
  • HTML全文浏览量:  1
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-04
  • 修回日期:  2019-12-09
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回
    服务号
    订阅号