• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摆动推进鱼类鱼体波复模态分解及其特性分析

崔 祚 姜洪州

崔 祚, 姜洪州. 摆动推进鱼类鱼体波复模态分解及其特性分析[J]. 水下无人系统学报, 2020, 28(2): 119-125. doi: 10.11993/j.issn.2096-3920.2020.02.001
引用本文: 崔 祚, 姜洪州. 摆动推进鱼类鱼体波复模态分解及其特性分析[J]. 水下无人系统学报, 2020, 28(2): 119-125. doi: 10.11993/j.issn.2096-3920.2020.02.001
CUI Zuo, JIANG Hong-zhou. Complex Modal Decomposition and Characteristics Analysis of the Midline Motions of Swimming Fish Propelled by Undulating Body and Caudal Fin[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 119-125. doi: 10.11993/j.issn.2096-3920.2020.02.001
Citation: CUI Zuo, JIANG Hong-zhou. Complex Modal Decomposition and Characteristics Analysis of the Midline Motions of Swimming Fish Propelled by Undulating Body and Caudal Fin[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 119-125. doi: 10.11993/j.issn.2096-3920.2020.02.001

摆动推进鱼类鱼体波复模态分解及其特性分析

doi: 10.11993/j.issn.2096-3920.2020.02.001
基金项目: 国家自然科学基金项目(51275127); 贵州理工学院学术新苗项目(黔合字[2017]5789-20); 高层次人才科研启动项目(XJGC20190956)
详细信息
    作者简介:

    崔 祚(1988-), 男, 博士, 副教授, 主要研究方向为水下柔性机器人和计算流体力学等.

  • 中图分类号: TP242; TB301.2

Complex Modal Decomposition and Characteristics Analysis of the Midline Motions of Swimming Fish Propelled by Undulating Body and Caudal Fin

  • 摘要: 在自然界中, 大多数鱼类通过身体和尾鳍的复合波动形成独特的鱼体波曲线, 以获得其快速高效的游动性能。文中以鱼体波为研究对象, 采用复模态正交分解(COD)方法来研究鱼体的复合波动模式。从振动模态的角度看, 鱼类的游动是粘弹性鱼体在流体中的强迫振动, 鱼体波对应的是复模态振型。根据COD方法, 将鱼体波分解为纯行波和纯驻波两部分, 并利用复模态振型实部和虚部的相关系数来定义鱼体波的行波系数。通过分析鳗鲡科乐锦鳚鱼和亚鲹科虹鳟鱼的鱼体波数据, 得到对应鱼体波的行波系数分别为0.793和0.604。结果表明, 乐锦鳚鱼的鱼体波中含有较大的行波成分, 而虹鳟鱼鱼体波则含有较多的驻波成分。该结论从生物学上验证了鱼体波的复模态特性, 该特性与鱼体动力学特性以及游动模式有着密切关系。

     

  • [1]  [1] Lauder G V. Fish Locomotion: Recent Advances and New Directions[J]. Annual Review of Marine Science, 2015, 7: 521-545.
    [2] Yu J, Wang M, Dong H, et al. Motion Control and Motion Coordination of Bionic Robotic Fish: a Review[J]. Journal of Bionic Engineering, 2018, 15(4): 579-598.
    [3] Scaradozzi D, Palmieri G, Costa D, et al. BCF Swimming Locomotion for Autonomous Underwater Robots: a Review and a Novel Solution to Improve Control and Efficiency[J]. Ocean Engineering, 2017, 130: 437-453.
    [4] Alexander R M, Webb P W, Weihs D. The history of fish mechanics[J]. Fish Biomechanics, 1983: 1-35.
    [5] Breder C M. The Locomotion of Fishes[J]. Zoological, 1926, 4: 159-297.
    [6] Webb P W. Form and Function in Fish Swimming[J]. Scientific American, 1984, 251(1): 72-79.
    [7] Videler J J. Fish Swimming[M]. London: Chapman and Hall, 1993.
    [8] Triantafyllou M S, Triantafyllou G S. An Efficient Swimming Machine[J]. Scientific American, 1995, 272(3): 64-71.
    [9] Sfakiotakis M, Land D M. Review of Fish Swimming Modes for Aquatic Locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
    [10] Videler J J, Hess F. Fast Continuous Swimming of Two Pelagic Predators, Saithe(Pollachius Virens) and Mackeral (Scomber Scombrus): a Kinematic Analysis[J]. Journal of Experimental Biology, 1984, 109: 209-228.
    [11] Tytell E D, Carr J A, Danos N, et al. Body Stiffness and Damping Depend Sensitively on the Timing of Muscle Activation in Lampreys[J]. Integrative and Comparative Biology, 2018, 58(5): 860-873.
    [12] Tytell E D, Lauder G V. The Hydrodynamics of Eel Swimming: Wake Structure[J]. Journal of Experimental Biology, 2004, 207: 1825-1841.
    [13] Hultmark M, Leftwich M, Smits A J. Flow Field Measurements in the Wake of a Robotic Lamprey[J]. Experimental Fluids, 2007, 43: 683-690.
    [14] Videler J J, Wardle C S. Fish Swimming Stride by Stride: Speed Limits and Endurance[J]. Reviews in Fish Biology and Fisheries, 1991, 1: 23-40.
    [15] Tytell E D, Hsu C Y, Williams T L, et al. Interactions between Internal Forces, Body Stiffness, and Fluid Environment in a Neuromechanical Model of Lamprey Swimming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19832-19837.
    [16] Alvarado P V Y. Design of Biomimetic Compliant Devices for Locomotion in Liquid Environments[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2007.
    [17] 曹树谦, 张文德, 萧龙翔. 振动结构模态分析: 理论、实验与应用[M]. 天津: 天津大学出版社, 2001: 18-22.
    [18] Feeny B F. A Complex Orthogonal Decomposition for Wave Motion Analysis[J]. The Journal of Sound and Vibration, 2008, 310: 77-90.
    [19] Feeny B F, Feeny A K. Complex Modal Analysis of the Swimming Motion of a Whiting[J]. Journal of Vibration and Acoustics, 2013, 135: 021004.
    [20] Cui Z, Yang Z, Shen L, et al. Complex Modal Analysis of the Movements of Swimming Fish Propelled by Body and/or Caudal Fin[J]. Wave Motion, 2018, 78: 83-97.
    [21] Cui Z, Gu X, Li K. CFD Studies of the Effects of Waveform on Swimming Performance of Carangiform Fish[J]. Applied Sciences, 2017, 7(2): 149.
    [22] Yu Y Q, Howell L L, Lusk C, et al. Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model[J]. Journal of Mechanical Design, 2005, 127(4): 760-765.
    [23] Cui Z, Jiang H. Design and Implementation of Thunniform Robotic Fish with Variable Body Stiffness[J]. International Journal of Robotics & Automation, 2017, 32(2): 109-116.
  • 加载中
计量
  • 文章访问数:  310
  • HTML全文浏览量:  0
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-08-16
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回
    服务号
    订阅号