• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低频宽带多波束声呐系统设计及试验研究

岳 雷 姜春华 罗 松 王心怡 纳杰斯 马 雪 刘宝军 何其煜 丁明惠

岳 雷, 姜春华, 罗 松, 王心怡, 纳杰斯, 马 雪, 刘宝军, 何其煜, 丁明惠. 低频宽带多波束声呐系统设计及试验研究[J]. 水下无人系统学报, 2020, 28(1): 097-106. doi: 10.11993/j.issn.2096-3920.2020.01.014
引用本文: 岳 雷, 姜春华, 罗 松, 王心怡, 纳杰斯, 马 雪, 刘宝军, 何其煜, 丁明惠. 低频宽带多波束声呐系统设计及试验研究[J]. 水下无人系统学报, 2020, 28(1): 097-106. doi: 10.11993/j.issn.2096-3920.2020.01.014
YUE Lei, JIANG Chun-hua, LUO Song, WANG Xin-yi, NA Jie-si, MA Xue, LIU Bao-jun, HE Qi-yu, DING Ming-hui. Design and Experimental Research of Low-Frequency Broadband Multi-Beam Sonar System[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 097-106. doi: 10.11993/j.issn.2096-3920.2020.01.014
Citation: YUE Lei, JIANG Chun-hua, LUO Song, WANG Xin-yi, NA Jie-si, MA Xue, LIU Bao-jun, HE Qi-yu, DING Ming-hui. Design and Experimental Research of Low-Frequency Broadband Multi-Beam Sonar System[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 097-106. doi: 10.11993/j.issn.2096-3920.2020.01.014

低频宽带多波束声呐系统设计及试验研究

doi: 10.11993/j.issn.2096-3920.2020.01.014
详细信息
    作者简介:

    岳 雷(1988-), 男, 硕士, 工程师, 主要研究方向为水下信号与信息处理.

  • 中图分类号: TJ630; TB566

Design and Experimental Research of Low-Frequency Broadband Multi-Beam Sonar System

  • 摘要: 声学方法探测沉底及掩埋小目标在沉埋雷探测、海洋油气田管线定位等军民技术应用领域有着迫切需求及重要意义。文中概述了浅地层剖面仪、合成孔径声呐及海底三维成像系统等几种主流声学探测沉底及掩埋目标技术装备的现状及特点, 分析了各自优势及存在的不足。并针对沉底及掩埋有限长管线目标探测需求, 分析了低频宽带多波束声呐探测沉底及掩埋有限长管线目标的混响抑制及空间分辨能力, 设计了系统的技术指标、使用方式、声探测基阵技术方案、硬件技术方案、信号处理流程、软件界面及软件处理流程, 归纳总结了文中设计的低频宽带多波束声呐系统特点, 在湖上完成了沉底有限长管线目标的试验验证。结果表明, 低频宽带多波束声呐能可靠并有效地探测沉底管线目标。

     

  • [1] 韩孝辉, 李亮, 苟鹏飞. 探测海底输油气管线状态的方法[J]. 工程地球物理学报, 2017, 14(6): 11-17.

    Han Xiao-hui, Li Liang, Gou Peng-fei. Methods for Detecting the State of Submarine Oil and Gas Pipeline[J]. Chinese Journal of Engineering Geophysics, 2017,14(6): 11-17.
    [2] 陈思行, 刘亮. 一种海底小目标近距离探测系统及试验研究[J]. 舰船科学技术, 2017, 39(4): 135-139.

    Chen Si-xing, Liu Liang. A Kind of Seafloor Small Target Close Detection System and Its Experimental Research[J]. Ship Science and Technology, 2017, 39(4): 135-139.
    [3] 陈晓鹏, 周利生. 掩埋小目标声探测技术研究[J]. 声学技术, 2012, 31(1): 30-35.

    Chen Xiao-peng, Zhou Li-sheng. Review of Current Status of Buried-object Detection Techniques[J]. Technical Acoustics, 2012, 31(1): 30-35.
    [4] 杨敏, 宋湦, 王芳, 等. 掩埋海底管道探测方法及新技术应用研究[J]. 海洋科学, 2015, 39(6): 129-132.

    Yang Min, Song Sheng, Wang Fang, et al. Discussion Methods of Buried Submarine Pipeline Detection and Application of New Technology[J]. Marine Sciences, 2015, 39(6): 129-132.
    [5] 张同伟, 秦升杰, 王向鑫, 等.深海浅地层剖面探测系统现状及展望[J].工程地球物理学报, 2018, 15(5): 547- 554.

    Zhang Tong-wei, Qin Sheng-jie, Wang Xiang-xin, et al. Technical Status and Development Trend of Deep Sea Sub-bottom Profiler[J]. Chinese Journal of Engineering Geophysics, 2018, 15(5): 547-554.
    [6] 王圣豹. 多波束参量阵浅地层剖面仪测深分机接收与采集电路设计[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [7] 魏志强, 张志强, 蒋俊杰. 浅地层剖面仪在大亚湾海底管道检测中的应用[J]. 海洋测绘, 2009, 29(6): 71-73.

    Wei Zhi-qiang, Zhang Zhi-qiang, Jiang Jun-jie. Application of Subbottom Profiler in Inspecting Investigation of Daya Bay Seabed Pipeline[J]. Hydrogaphic surveying and charting, 2009, 29(6): 71-73.
    [8] Deimling J S V, Held P, Feldens P, et al. Effects of Using Inclined Parametric Echosounding on Sub-bottom Acoustic Imaging and Advances in Buried Object Detection[J]. Geo-Marine Letters, 2016, 36(2): 113-119.
    [9] Tesei A, Fawcett J A, Lim R. Physics-based Detection of Man-made Elastic Objects Buried in High-density-clutter Areas of Saturated Sediments[J]. Applied Acoustics, 2008, 69(5): 422-437.
    [10] 谢思捷. 滩涂掩埋管道探测与定位关键技术研究[D]. 天津: 天津大学, 2017.
    [11] Xiang P, Chen Q, Wen X, et al. Shallow-water Wideband Low-frequency Synthetic Aperture Sonar for an Autonomous Underwater Vehicle[J]. Ocean Engineering, 2016, 118: 117-129.
    [12] Williams D P. Fast Target Detection in Synthetic Aperture Sonar Imagery: A New Algorithm and Large-Scale Performance Analysis[J]. IEEE Journal of Oceanic Engineering, 2015, 40(1): 71-92.
    [13] Gutowski M, Malgorn J, Vardy M. 3D Sub-bottom Profiling—High Resolution 3D Imaging of Shallow Subsurface Structures and Buried Objects[C]//Oceans 2015, Genova: IEEE, 2015.
    [14] Hamschin B, Loughlin P. Sonar Waveform Design for Optimum Target Detection: The Impact of Object Burial State[C]//Oceans 2010. Sydney: IEEE, 2010.
    [15] 丁振平. TR-MIMO声纳探测方法与实验研究[D]. 杭州: 浙江大学, 2014.
    [16] 李斯. 分布式相控MIMO声纳探测及实验研究[D]. 杭州: 浙江大学, 2014.
    [17] 岳雷. 一种基于双极性脉冲信号的沉底及掩埋小目标探测方法[J]. 兵工学报, 2019, 40(1): 146-155.

    Yue Lei. A Detection Method Based on Bipolar Pulse for Undersea and Buried Small Targets[J]. Acta Armamentarii, 2019, 40(1): 146-155.
    [18] 岳雷, 姜春华. 一种沉底小目标的主动高频仿生波形分析及探测方法[J]. 声学技术, 2016, 35(4): 325-330.

    Yue Lei, Jiang Chun-hua. The Active High Frequency Bionic Waveform Analysis and Bionic Detection Method for Small Target at Sea Bottom[J]. Technical Acoustics, 2016, 35(4): 325-330.
    [19] Dix J K. 3D High-resolution Acoustic Imaging of the Sub- seabed[J]. Applied Acoustics, 2008, 69(5): 412-421.
    [20] 刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010:232-233.
    [21] 汪德昭, 尚尔昌. 水声学[M]. 北京: 科学出版社, 2013: 28-32,267-279.
    [22] 万琳, 范军, 汤渭霖. 海底掩埋物的目标强度和回声信混比[J]. 声学学报, 2006, 31(2): 151-157.

    Wan Lin, Fan Jun, Tang Wei-lin. The Target Strength and Echo-to-reverberation Ratio of a Buried Target in Sediment[J]. Acta Acustca, 2006, 31(2): 151-157.
    [23] 潘云龙, 廖小满. 基于 LabVIEW系统的水声测向方法设计[J]. 舰船科学技术, 2016, 38(7): 91-94.

    Pan Yun-long, Liao Xiao-man. Direction Detecting of Underwater Acoustic Based on Labview System[J]. Ship Science and Technology, 2016, 38(7): 91-94.
    [24] 王伟印, 陈毅, 王世全, 等. 基于LabVIEW的换能器辐射声场自动测量系统[J]. 声学与电子工程, 2019(1): 24-28.
  • 加载中
计量
  • 文章访问数:  711
  • HTML全文浏览量:  1
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 修回日期:  2019-07-08
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回
    服务号
    订阅号