• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下声学滑翔机研究进展及关键技术

孙芹东 兰世泉 王 超 王文龙

孙芹东, 兰世泉, 王 超, 王文龙. 水下声学滑翔机研究进展及关键技术[J]. 水下无人系统学报, 2020, 28(1): 010-17. doi: 10.11993/j.issn.2096-3920.2020.01.002
引用本文: 孙芹东, 兰世泉, 王 超, 王文龙. 水下声学滑翔机研究进展及关键技术[J]. 水下无人系统学报, 2020, 28(1): 010-17. doi: 10.11993/j.issn.2096-3920.2020.01.002
SUN Qin-dong, LAN Shi-quan, WANG Chao, WANG Wen-long. Key Technologies of Underwater Acoustic Glider: A Review[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 010-17. doi: 10.11993/j.issn.2096-3920.2020.01.002
Citation: SUN Qin-dong, LAN Shi-quan, WANG Chao, WANG Wen-long. Key Technologies of Underwater Acoustic Glider: A Review[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 010-17. doi: 10.11993/j.issn.2096-3920.2020.01.002

水下声学滑翔机研究进展及关键技术

doi: 10.11993/j.issn.2096-3920.2020.01.002
基金项目: 国家重点研发计划资助项目(2019YFC0311700); 青岛海洋科学与技术试点国家实验室问海计划资助项目(2017WH- ZZB0601).
详细信息
  • 中图分类号: U674.941; TB565.1

Key Technologies of Underwater Acoustic Glider: A Review

  • 摘要: 水下声学滑翔机具有大航程、长航时、高隐蔽性及低成本的特点, 是用于水下移动目标探测、海洋水文环境精细化测量的优势平台, 在全球海洋安全与环境观测体系建设中发挥着重要作用。文章详细梳理了国内外水下声学滑翔机研究进展, 简述其系统组成和功能; 探讨了水下声学滑翔机设计及规模化应用涉及的平台减振降噪、自主控制、多模混合推进、声学传感器设计及应用、目标属性自主判别, 以及安全布放与回收等关键技术。文中研究可为国内同类水下无人探测装备的系统开发提供参考。

     

  • [1] Matsumoto H, Stalin S E, Embley R W, et al. Hydroacoustics of a Submarine Eruption in the Northeast Lau Basin Using an Acoustic Glider[C]//Oceans 2010. Sydney: IEEE, 2010: 1-6.
    [2] Webb D C, Simonetti P J, Jones C P. Slocum: An Underwater Glider Propelled by Environmental Energy[J]. IEEE J. Oceanic Eng, 2001, 26(4): 447-452.
    [3] Moore S E, Howe B M, Stafford K M, et al. Including Whale Call Detection in Standard Ocean Measurements: Application of Acoustic Seagliders[J]. Marine Technology Society, 2007, 41(4): 53-57.
    [4] Imlach J, Mahr R. Modification of a Military Grade Glider for Coastal Scientific Applications[C]//Oceans 2012. Hampton Roads, VA: IEEE, 2012: 1-6.
    [5] Stephen. Autonomous Underwater Gliders[J]. InTech, 2009, 47(5): 84-96.
    [6] ONR. Liberdade XRay Advanced Underwater Gilder [EB/OL]. (2006-04-19)[2019-10-31]. https://commons. Wik imedia.org/ wiki/File:Liberdade_XRay_ underwater_ glider.jpg.
    [7] Hildebrand J A, D’Spain G L, Roch M A, et al. Glider- based Passive Acoustic Monitoring Techniques in the Southern California Region[R]. La Jolla: Scripps Institution of Oceanography, 2009.
    [8] Gerald L D, Jenkins S A, Zimmerman R, et al. Underwater Acoustic Measurements with the Liberdade/X-Ray Flying Wing Glider[J]. The Journal of the Acoustical Society of America, 2005, 117(4): 2624.
    [9] 王赞. 水下滑翔机声矢量探测系统研究与实现[D]. 北京: 中国科学院大学, 2014.
    [10] 张小川, 王超, 孙芹东, 等. 水下滑翔机对矢量水听器测向影响研究[J]. 声学技术, 2017, 36(5): 327-328.

    Zhang Xiao-chuan, Wang Chao, Sun Qin-dong, et al. Influences by Underwater Glider on Measuring Direction of Vector Hydrophone[J]. Technical Acoustics, 2017, 36(5): 327-328.
    [11] 孙芹东, 王超, 王文龙, 等. 声矢量传感器设计及水下滑翔机噪声测试分析[J]. 声学技术, 2017, 36(5): 767- 768.

    Sun Qin-dong, Wang Chao, Wang Wen-long, et al. Design of Acoustic Vector Sensor and Noise Test Analysis of Underwater glider[J]. Technical Acoustics, 2017, 36(5): 767-768.
    [12] 王超, 孙芹东, 王文龙, 等. 水下目标警戒滑翔机声学系统设计与实现[J]. 声学技术, 2018, 37(5): 84-87.

    Wang Chao, Sun Qin-dong, Wang Wen-long, et al. Acoustic System Design and Implementation for Underwater Target Warning Glider[J]. Technical Acoustics, 2018, 37(5): 84-87.
    [13] 王超, 孙芹东, 兰世泉, 等. 水下声学滑翔机目标探测性能南海试验分析[J]. 声学技术, 2018, 37(6): 149-150.

    Wang Chao, Sun Qin-dong, Lan Shi-quan, et al. Underwater Acoustic Glider Target Detection Performance Trial Analysis in the South China Sea[J]. Technical Acoustics, 2018, 37(6): 149-150.
    [14] 刘璐, 兰世泉, 肖灵, 等.基于水下滑翔机的海洋环境噪声测量系统[J].应用声学, 2017, 36(4): 370-376.

    Liu Lu, Lan Shi-quan, Xiao Ling, et al. Measurement Sy- stem of Ambient Sea Noise Based on the Underwater Glider[J]. Journal of Applied Acoustics, 2017, 36(4): 370- 376.
    [15] 刘璐, 肖灵.混合驱动水下滑翔机自噪声测量及分析[J].中国舰船研究, 2017, 12(4): 132-139.

    Liu Lu, Xiao Ling. Measurement and Analysis of Self-noise in Hybrid-driven Underwater Gliders[J].Chinese Journal of Ship Research, 2017, 12(4): 132-139.
    [16] Liu L, Xiao L, Lan S Q, et al. Using Petrel II Glider to Analyze Underwater Noise Spectrogram in the South China Sea[J]. Acoustic Australia, 2018, 46(2): 1-8.
    [17] Curtin T B, Crimmins D M, Curcio J, et al. Autonomous Underwater Vehicles: Trends and transformations[J]. Marine Technology Society Journal, 2005, 39: 65-75.
    [18] Fiorelli E, Bhatta F, Leonard N E. Adaptive Sampling Using Feedback Control of an Autonomous Underwater Glider Fleet[C]//Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology. Durham New Hampshire: Autonomous Undersea Systems Institute, 2003: 1-16.
    [19] Brito M P, Lewis R S, Bose N, et al. Adaptive Autonomous Underwater Vehicles: An Assessment of Their Effectiveness for Oceanographic Applications[J]. IEEE Transactions on Engineering Management, 2018, 66(1): 98-111.
    [20] Arvind P, Binney J, Hollinger G A, et al. Risk-aware Path Planning for Autonomous Underwater Vehicles using Predictive Ocean Models[J]. Journal of Field Robotics, 2013, 30(5): 741-762.
    [21] Lauren C. Expanding the Capabilities of the Slocum Glider[C]//Ocenas 2016 MTS/IEEE Monterey. California: IEEE, 2016: 1-5.
    [22] Hans C W, Ulrich K. Feature Based Adaptive Energy Management of Sensors on Autonomous Underwater Vehicles[J]. Ocean Engineering, 2015, 97: 21-29.
    [23] Joo M G. A Controller Comprising Tail Wing Control of a Hybrid Autonomous Underwater Vehicle for Use as an Underwater Glider[J]. International Journal of Naval Arc- hitecture and Ocean Engineering, 2019, 11(2): 865-874.
    [24] Khalid I, Arshad M R, Ishak S. A Hybrid-driven Underwater Glider Model, Hydrodynamics Estimation, and an Analysis of the Motion Control[J]. Ocean Engineering, 2014, 81: 111-129.
    [25] Niu W D, Wang S X, Wang Y H, et al. Stability Analysis of Hybrid-driven Underwater Glider[J]. China Ocean Engineering, 2017, 31(5): 528-538.
    [26] Yang Y, Liu Y, Zhang L, et al. Influence of the Propeller on Motion Performance of HUGs[C]//Oceans 2016. Shanghai: IEEE, 2016.
    [27] Lei Z, Wang Y, Zhang L, et al. Uncertainty Behavior Research of Hybrid Underwater Glider[C]//Oceans 2016. Shanghai: IEEE, 2016.
    [28] 牛嗣亮, 张振宇, 胡永明, 等. 单矢量水听器的姿态修正测向问题探讨[J]. 国防科技大学学报, 2011, 33(6): 105-110.

    Niu Si-liang, Zhang Zhen-yu, Hu Yong-ming, et al. Direction of Arrival Estimation from a Single Vector Hydrophone with Attitude Correction[J]. Journal of National University of Defense Technology, 2011, 33(6): 105-110.
    [29] Clay S J, Andic H. Underwater Acoustic Bearing Sensor: US: US7224640[P]. 2007-05-29.
    [30] 笪良龙, 王文龙, 孙芹东, 等. 一种微型矢量水听器姿态测量系统[J]. 中国惯性技术学报, 2016, 24(1): 20-25.

    Da Liang-long, Wang Wen-long, Sun Qin-dong, et al. Miniaturized Attitude Measurement System of Vector Hydrophone[J]. Journal of Chinese Inertial Technology, 2016, 24(1): 20-25.
    [31] 笪良龙, 孙芹东, 王文龙, 等. 基于 MEMS 姿态传感器的声矢量传感器设计[J]. 中国惯性技术学报, 2016, 24(4): 531-536.

    Da Liang-long, Sun Qin-dong, Wang Wen-long, et al. Design of an Acoustic Vector Sensor Based on MEMS Attitude Sensor[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 531-536.
    [32] 孙芹东, 王超, 王文龙, 等. 适于水下缓动无人平台的同振式矢量水听器设计与应用[J]. 声学技术, 2018, 37(6): 591-592.

    Sun Qin-dong, Wang Chao, Wang Wen-long, et al. Design and Application of Co-vibrating Vector Hydrophone for Underwater Slow-moving Unmanned Platform[J]. Technical Acoustics, 2018, 37(6): 591-592.
    [33] 凌国民. 无人平台自主反潜[C]//2017年装备技术发展论坛论文集. 北京: 中国造船工程学会电子技术学术委员会, 2017.
    [34] 李大光, 周军. 美国海上猎手无人战舰将使未来反潜作战发生改变[J]. 飞航导弹, 2016(9): 3-7.
    [35] DARPA. Cross Domain Maritime Surveillance and Targeting[R]. DARPA-BBA-16-01. Virginia: DARPA, 2015.
    [36] 叶显武. 从DARPA研究计划看海战场预警探测系统发展[J]. 现代雷达, 2016, 38(11): 13-17.

    Ye Xian-wu. Development Trend Study of Marine Early Warning and Detection System by Reviewing DARPA Current Research Programs[J]. Modern Radar, 2016, 38(11): 13-17.
    [37] 张少康, 田德艳. 水下声目标的梅尔倒谱系数智能分类方法[J]. 应用声学, 2019, 38(2): 267-272.

    Zhang Shao-kang, Tian De-yan. Intelligent Classification Method of Mel Frequency Cepstrum Coefficient for Underwater Acoustic Targets[J]. Journal of Applied Acoustics, 2019, 38(2): 267-272.
    [38] Rudnick D L, Davis R E, Eriksen C C, et al. Underwater Glider for Ocean Research[J]. Marine Technology Society Journal, 2004, 38(2): 73-84.
    [39] Paley D A, Zhang F, Leonard N E. Cooperative Control for Ocean Sampling: The Glider Coordinated Control System[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 735-744.
    [40] Peng Z, Wang D, Wang H, et al. Distributed Coordinated Tracking of Multiple Autonomous Underwater Vehicles[J]. Nonlinear Dynamics, 2014, 78(2): 1261-1276.
    [41] Xue D Y, Wu Z L, Wang Y H, et al. Coordinate Control, Motion Optimization and Sea Experiment of a Fleet of Petrel-II Gliders[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 17.
    [42] Fratantoni D M, Haddock S H D. Introduction to the Autonomous Ocean Sampling Network(AOSN-II) Program [J]. Deep Sea Research Part II Topical Studies in Oceanography, 2009, 56(3-5): 61.
    [43] Enrique F P. Contributions to Underwater Glider Path Planning[D]. Las Palmas de Gran Canaria: Universidad de Las Palmas de Gran Canaria, 2014.
  • 加载中
计量
  • 文章访问数:  2138
  • HTML全文浏览量:  37
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-31
  • 修回日期:  2019-12-19
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回
    服务号
    订阅号