• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

装药深度及空气域尺寸对水下爆炸的影响分析

刘世聪 王秋生 娄浩然

刘世聪, 王秋生, 娄浩然. 装药深度及空气域尺寸对水下爆炸的影响分析[J]. 水下无人系统学报, 2019, 27(6): 664-672. doi: 10.11993/j.issn.2096-3920.2019.06.010
引用本文: 刘世聪, 王秋生, 娄浩然. 装药深度及空气域尺寸对水下爆炸的影响分析[J]. 水下无人系统学报, 2019, 27(6): 664-672. doi: 10.11993/j.issn.2096-3920.2019.06.010
LIU Shi-cong, WANG Qiu-sheng, LOU Hao-ran. Effects of Charge Depth and Air Domain Size on Underwater Explosion[J]. Journal of Unmanned Undersea Systems, 2019, 27(6): 664-672. doi: 10.11993/j.issn.2096-3920.2019.06.010
Citation: LIU Shi-cong, WANG Qiu-sheng, LOU Hao-ran. Effects of Charge Depth and Air Domain Size on Underwater Explosion[J]. Journal of Unmanned Undersea Systems, 2019, 27(6): 664-672. doi: 10.11993/j.issn.2096-3920.2019.06.010

装药深度及空气域尺寸对水下爆炸的影响分析

doi: 10.11993/j.issn.2096-3920.2019.06.010
基金项目: 国家自然科学基金重点资助项目(51339006); 北京市科委重点项目资助(Z161100002216001)
详细信息
    作者简介:

    刘世聪(1993-), 男, 硕士, 主要研究方向为水下爆炸研究.

  • 中图分类号: TJ630; TV542.5

Effects of Charge Depth and Air Domain Size on Underwater Explosion

  • 摘要: 在水下爆炸试验中, 很难开展针对装药深度及影响数值计算精度的空气域尺寸研究, 因此, 数值仿真就成为研究水下爆炸的重要手段。文中基于离心机水下爆炸试验, 利用二维、三维模型对超重力场下的球形炸药水下爆炸进行仿真, 并与试验结果进行对比, 验证了所建模型的合理性。在2个模型的基础上, 同时建立具有不同装药深度及空气域尺寸的模型, 以研究两者对水下爆炸冲击波及气泡脉动数值仿真结果的影响。研究表明: 装药深度越大, 距离炸药中心相同测距处的冲击波峰值越大, 但峰值随装药深度的增幅并不明显; 空气域尺寸大小对水下爆炸气泡脉动计算影响也很小。

     

  • [1] Snay H G. Hydrodynamics of Underwater Explosions[C]//Symposium on Naval Hydrodynamics 1st, Washiton D C, USA. 1956: 325-352.
    [2] Cole R H. Underwater Explosions[M]. New Jersey: Prin- ceton University Press, 1948.
    [3] Brett J M, Buckland M, Turner T, et al. An Experimental Facility for Imaging of Medium Scale Underwater Explosions DSTO-TR-1432[R]. Australian: Defence Science and Technology Organisation, 2003.
    [4] 黄超, 汪斌, 姚熊亮, 等. 试验室尺度水下爆炸气泡试验方法[J]. 传感器与微系统, 2011, 30(12): 75-77, 81.

    Huang Chao, Wang Bin, Yao Xiong-liang, et al. Laboratory-scale Underwater Explosion Bubble Experiment Method[J]. Transducer and Microsystem Technologies, 2011, 30(12): 75-77, 81.
    [5] Benjamin T B, Ellis A T. The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries[J]. Philosophical Transactions of the Royal Society of London, 1966, 260(1110): 221-240.
    [6] Tomita Y, Shima A, Takahashi K. The Collapse of a Gas Bubble Attached to a Solid Wall by a Shock Wave and the Induced Impact Pressure[J]. American Society of Mechanical Engineers, 1983, 105(3): 341-347.
    [7] Zhang A M, Li S, Cui J, et al. Study on Splitting of a Toroidal Bubble Near a Rigid Boundary[J]. Physics of Fluids, 2015, 27(6): 062102.
    [8] 张阿漫, 王超, 王诗平, 等.气泡与自由液面相互作用的试验研究[J]. 物理学报, 2012, 61(8): 1-13.

    Zhang A-man, Wang Chao, Wang Shi-ping, et al. Experimental Study of Interaction Between Bubble and Free Surface[J]. Acta Physica Sinica, 2012, 61(8): 1-13.
    [9] 范一锴, 陈祖煜, 梁向前, 等. 砂中爆炸成坑的离心模型试验分析方法比较[J]. 岩石力学与工程学报, 2011, 30(S2): 4123-4128.

    Fan Yi-kai, Chen Zu-yu, Liang Xiang-qian, et al. Comp- arison of Three Methods for Geotechnical Centrifuge Model Tests of Explosion Cratering Sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 4123-4128.
    [10] Holsapple K A, Schmidt R M. On the Scaling of Crater Dimensions 1. Explosive Processes[J]. Journal of Geophysical Research Atmospheres, 1980, 85(B12): 7247- 7256.
    [11] Hu J, Chen Z Y, Wang Q S, et al. Underwater Explosion in Centrifuge PartⅠ: Validation and Calibration of Scaling Law[J]. Science China Technological Sciences, 2017, 60 (11): 1638-1657.
    [12] Long Y, Zhou H Y, Liang X Q, et al. Underwater Explosion in Centrifuge Part II: Dynamic Responses of Defensive Steel Plate[J]. Science China Technological Sciences, 2017, 60(12): 1941-1957.
    [13] Wu J Y, Long Y, Zhong M S, et al. Centrifuge Experiment and Numerical Study on the Dynamic Response of Air-backed Plate to Underwater Explosion[J]. Journal of Vibroengineering, 2017, 19(7): 5231-5247.
    [14] Song G, Chen Z Y, Long Y, et al. Experiment and Numerical Investigation of the Centrifugal Model for Underwater Explosion Shock Wave and Bubble Pulsation[J], Ocean Engineering, 2017, 142(15): 523-531.
    [15] 娄浩然, 胡晶, 梁向前, 等. 超重力场下球形炸药水下爆炸试验及数值模拟[J]. 工程爆破, 2017, 23(3): 15- 21.

    Lou Hao-ran, Hu Jing, Liang Xiang-qian, et al. Underwater Explosion Experiment and Numerical Simulation of Spherical Explosives Under Hypergravity Field[J]. Engineering Blasting, 2017, 23(3): 15-21.
    [16] 王树乐, 陈高杰, 沈晓乐, 等. 基于并行计算的某战斗部中近场毁伤能力仿真研究[J]. 兵工学报, 2015, 36(S1): 298-302.

    Wang Shu-le, Chen Gao-jie, Shen Xiao-le, et al. A Numerical Study of Warhead Damage Based on Parallel Computing in Near-field[J]. Acta Armamentarh, 2015, 36(S1): 298-302.
    [17] 徐豫新, 王树山, 李园. 水下爆炸数值仿真研究[J]. 弹箭与制导学报, 2009, 29(6): 95-97, 102.

    Xu Yu-xin, Wang Shu-shan, Li Yuan. Study on Numerical Simulation of The Underwater explosion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 95-97, 102.
    [18] 张效慈. 水下爆炸试验相似准则[J]. 船舶力学, 2007, 11(1): 108-118.

    Zhang Xiao-ci. Similarity Criteria for Experiment of Underwater Explosion[J]. Journal of Ship Mechanics, 2007, 11(1): 108-118.
    [19] Century Dynamic Inc. AUTODYN Theory Manual Version 4.3[M]. USA: Century Dynamic Inc, 2005.
    [20] 韩早, 王伯良. 混合炸药爆速的新方法[J]. 爆炸与冲击, 2014, 34(4): 421-426.

    Han Zao, Wang Bo-liang. A New Method for Predicting Detonation Velocity of Composite Explosive[J]. Explosion and Shock Waves, 2014, 34(4): 421-426.
    [21] Johansson C H, Persson P A. Density and Pressure in the Chapman-Jouguet Plane as Functions of Initial Density of Explosives[J]. Nature, 1996, 212(5067): 1230-1231.
    [22] Urtiew P A, Hayes B. Parametric Study of the Dynamic JWL-EOS for Detonation Products[J]. Combustion, Explosion, and Shock Waves. 1991, 27(4): 505-514.
    [23] Urtiew P A, Hayes B. Parametric Study of the Dynamic JWL EOS for Detonation Products[J]. Combustion Explosion and Shock Waves, 1991, 27(4): 504-514.
    [24] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理[M]. 北京: 国防工业出版社, 2000.
    [25] Urtiew P A, Hayes B. Empirical Estimate of Detonation Parameters in Condensed Explosives[J]. Journal of Energetic Materials, 1991, 9(4): 297-318.
    [26] Gel’fand B E, Takayama K. Similarity Criteria for Underwater Explosions[J]. Combustion Explosion & Shock Waves, 2004, 40(2): 214-218.
    [27] 杨坤, 陈朗, 伍俊英, 等. 计算网格与人工粘性系数对炸药水中爆炸数值模拟计算的影响分析[J]. 兵工学报, 2014, 35(S2): 237-243.

    Yang Kun, Chen Lang, Wu Jun-ying, et al. The Effects of Computing Grid and Artificial Viscosity Coefficient on Underwater Explosion Numerical Simulation[J]. Acta Armamenth, 2014, 35(S2): 237-243.
  • 加载中
计量
  • 文章访问数:  399
  • HTML全文浏览量:  3
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-12
  • 修回日期:  2019-05-16
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回
    服务号
    订阅号