• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下滑翔机导航技术发展现状与展望

吴尚尚 李阁阁 兰世泉 杨绍琼 张连洪

吴尚尚, 李阁阁, 兰世泉, 杨绍琼, 张连洪. 水下滑翔机导航技术发展现状与展望[J]. 水下无人系统学报, 2019, 27(5): 529-540. doi: 10.11993/j.issn.2096-3920.2019.05.008
引用本文: 吴尚尚, 李阁阁, 兰世泉, 杨绍琼, 张连洪. 水下滑翔机导航技术发展现状与展望[J]. 水下无人系统学报, 2019, 27(5): 529-540. doi: 10.11993/j.issn.2096-3920.2019.05.008
WU Shang-shang, LI Ge-ge, LAN Shi-quan, YANG Shao-qiong, ZHANG Lian-hong. Present Situation and Prospect of Navigation Technologies for Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 529-540. doi: 10.11993/j.issn.2096-3920.2019.05.008
Citation: WU Shang-shang, LI Ge-ge, LAN Shi-quan, YANG Shao-qiong, ZHANG Lian-hong. Present Situation and Prospect of Navigation Technologies for Underwater Glider[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 529-540. doi: 10.11993/j.issn.2096-3920.2019.05.008

水下滑翔机导航技术发展现状与展望

doi: 10.11993/j.issn.2096-3920.2019.05.008
基金项目: 国家重点研发计划(2016YFC0301100, 2017YFC0305902)和深圳市投资控股有限公司资金; 国家自然科学基金 (51722508, 11902219); 天津市自然科学基金(18JCQNJC05100, 18JCJQJC46400); 青岛海洋科学与技术国家实验室主任基金(QNLM201705)和“鳌山人才”培养计划(2017ASTCP-OS05, 2017ASTCP-OE01); 山东省支持青岛海洋科学与技术试点国家实验室重大科技专项(2018SDKJ0205).
详细信息
    通讯作者:

    杨绍琼(1986-), 男, 博士, 讲师, 主要研究方向为深海智能装备、水下机器人和实验流体力学等. 吴尚尚、李阁阁对本文贡献相同, 为共同第一作者.

  • 中图分类号: TJ630.33; U674.941; TN967.2

Present Situation and Prospect of Navigation Technologies for Underwater Glider

  • 摘要: 水下滑翔机水下导航定位精度的提高对于滑翔机完成海洋环境观测、资源探测、海洋目标识别与定位等任务至关重要。现有的水下滑翔机导航技术以航位推算搭配全球定位系统(GPS)为主。随着导航技术的进步, 惯性导航、声学导航、海洋地球物理导航和组合导航等技术将更多地应用于水下滑翔机。基于此, 文中简要介绍了水下导航技术原理、分类以及常用算法, 综述了水下滑翔机导航相关技术研究与应用的国内外现状, 探讨了水下滑翔机冰下导航的技术难点和发展趋势。文中的工作可为水下滑翔机导航技术的深入研究与试验应用提供依据。

     

  • [1] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [2] 尹伟伟, 郭士荦. 非卫星水下导航定位技术综述[J]. 舰船电子工程, 2017, 37(3): 8-11.

    Yin Wei-wei, Guo Shi-luo. Survey on Non-satellite Underwater Navigation and Positioning Technology[J]. Ship Electronic Engineering, 37(3): 8-11.
    [3] Yan Z, Peng S, Zhou J, et al. Research on an Improved Dead Reckoning for AUV Navigation[C]//IEEE 2010 Chinese Control and Decision Conference (CCDC). Xuzhou, China: IEEE, 2010.
    [4] 张爱军. 水下潜器组合导航定位及数据融合技术研究[D]. 南京: 南京理工大学, 2009.
    [5] 赵辉. 基于水下航行器导航定位及信息融合技术研究[D]. 南京: 南京理工大学, 2007.
    [6] 张红梅, 赵建虎, 杨鲲, 等. 水下导航定位技术[M]. 武汉: 武汉大学出版社, 2010.
    [7] Stutters L, Liu H, Tiltman C, et al. Navigation Technologies for Autonomous Underwater Vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(4): 581-589.
    [8] Paull L, Saeedi S, Seto M, et al. AUV Navigation and Localization: A Review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 131-149.
    [9] Jalving B, Gade K, Svartveit K, et a1. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System[J]. Modeling, Identification and Control, 2004, 25(4): 223-235.
    [10] Hegrenæs ?, Ramstad A, Pedersen T, et al. Validation of a New Generation DVL for Underwater Vehicle Navigation[C]//2016 IEEE/OES Autonomous Underwater Vehi-cles(AUV). Richardson, US: IEEE, 2016: 342-348.
    [11] 张磊. 船用捷联式惯性/天文组合导航方法的研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [12] 彭富清, 霍立业. 海洋地球物理导航[J]. 地球物理学进展, 2007, 22(3): 759-764.

    Peng Fu-qing, Huo Li-ye. Marine Geophysical Navigation. Progress in Geophysics[J]. Progress in Geophysics, 2007, 22(3): 759-764.
    [13] Fallon M F, Papadopoulos G, Leonard J J, et al. Cooperative AUV Navigation Using a Single Maneuvering Surface Craft[J]. The International Journal of Robotics Rese- arch, 2010, 29(12): 1461-1474.
    [14] 姚剑奇. 水下重力辅助导航定位方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [15] 李姗姗. 水下重力辅助惯性导航的理论与方法研究[D]. 郑州: 解放军信息工程大学, 2010.
    [16] Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
    [17] Chowdhury G, Johnson E N, Magree D, et a1. GPS-denied Indoor and Outdoor Monocular Vision Aided Navigation and Control of Unmanned Aircraft[J]. Journal of Field Robotics, 2013, 30(3): 415-438.
    [18] Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
    [19] Shabani M, Gholami A, Davari N. Asynchronous Direct Kalman Filtering Approach for Underwater Integrated Navigation System[J]. Nonlinear Dynamics, 2014, 80(1-2): 71-85.
    [20] Davari N, Gholami A. An Asynchronous Adaptive Direct Kalman Filter Algorithm to Improve Underwater Navigation System Performance[J]. IEEE Sensors Journal, 2017, 17(4): 1061-1068.
    [21] Noureldin A, Karamat T B, Eberts M D, et al. Performance Enhancement of MEMS-Based INS/GPS Integration for Low-Cost Navigation Applications[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1077- 1096.
    [22] Wan E A, Van Der Merwe R. The Unscented Kalman Filter for Nonlinear Estimation[C]//Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium(Cat. No. 00EX373). Lake Louise, Alberta, Canada: IEEE, 2000: 153-158.
    [23] Huang H Q, Chen X Y, Liu H, et al. Study on the Design and Algorithm of INS/MCP/DR Integrated Navigation Method for Underwater Glider[C]//2012 Third International Confer-ence on Digital Manufacturing & Automation. NW Wash-ington, DC: IEEE, 2012: 843-846.
    [24] Sherman J, Davis R E, Owens W B, et al. The Autonomous Underwater Glider “Spray”[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446.
    [25] Eriksen C C, Osse T J, Light R D, et al. Seaglider: A Long-Range Autonomous Underwater Vehicle for Ocean-ographic Research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436.
    [26] Merckelbach L M, Briggs R D, Smeed D A, et al. Current Measurements from Autonomous Underwater Gliders[C]// 2008 IEEE/OES 9th Working Conference on Current Measurement Technology. Charleston, SC, USA: IEEE, 2008: 61-67.
    [27] Webb D C, Simonetti P J, Jones C P. SLOCUM: An Underwater Glider Propelled by Environmental Energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447- 452.
    [28] Wikle C K. Atmospheric Modeling, Data Assimilation, and Predictability[J]. Technometrics, 2002, 47(4): 521- 521.
    [29] Szwaykowska K, Zhang F. Trend and Bounds for Error Growth in Controlled Lagrangian Particle Tracking[J]. IEEE Journal of Oceanic Engineering, 2013, 39(1): 10-25.
    [30] Hart P E, Nilsson N J, Raphael B. Correction to “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”[J]. ACM SIGART Bulletin, 1972, 37(37): 28-29.
    [31] Fernández-Perdomo E, Cabrera-Gámez J, Hernández-Sosa D, et al. Path Planning for Gliders Using Regional Ocean Models: Application of Pinzón Path Planner with the ESEOAT Model and the RU27 Trans-Atlantic Flight Data[C]//Oceans’10 IEEE. Sydney, Australia: IEEE, 2010: 1-10.
    [32] Chang D, Zhang F, Edwards C R. Real-Time Guidance of Underwater Gliders Assisted by Predictive Ocean Models[J]. Journal of Atmospheric & Oceanic Technology, 2015, 32(3): 562-578.
    [33] Chang D, Liang X, Wu W, et al. Real-time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks[M]. Berlin, Heidelberg: Springer, 2014: 61-75.
    [34] Huang H, Chen X, Zhang B, et al. High Accuracy Navigation Information Estimation for Inertial System Using the Multi-model EKF Fusing Adams Explicit Formula Applied to Underwater Gliders[J]. ISA transactions, 2017, 66: 414-424.
    [35] Huang H, Zhou J, Zhang J, et al. Attitude Estimation Fusing Quasi-Newton and Cubature Kalman Filtering for Inertial Navigation System Aided with Magnetic Sensors[J]. IEEE Access, 2018, 6: 28755-28767.
    [36] Jenkins S A, Humphreys D E, Sherman J, et al. Underwater glider system study[R]. Scripps Institution of Oceanography Technical Report, 2003.
    [37] Kim J, Park Y, Lee S, et al. Underwater Glider Navigation Error Compensation Using Sea Current Data[J]. IFAC Proceedings Volumes, 2014, 47(3): 9661-9666.
    [38] Durbin J, Koopman S J. Time Series Analysis of Non Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives[J]. Journal of the Royal Statistical Society: Series B(Statistical Methodology), 2000, 62(1): 33-34.
    [39] Boyd S, El Ghaoui L, Feron E, et al. Linear Matrix Inequalities in System and Control Theory[M]. Pennsylvania, PA, USA: Society for Industrial and Applied Mathematics, 1994.
    [40] Chung D, Park C G, Lee J G. Observability Analysis of Strapdown Inertial Navigation System Using Lyapunov Transfomation[C]//35th IEEE Conference on Decision and Control. Kobe, Japan: IEEE, 1996: 23-28.
    [41] Wang L X, Guo L. Multi-objective Control in Integrated Navigation System Based on LMI[J]. Acta Aeronautical et Astronautica Sinica, 2008, 29: 102-106.
    [42] Yu M J, Lee S W. A Robust Extended Filter Design for SDINS In-flight Alignment[J]. International Journal of Control, Automation, and Systems, 2003, 1(4): 520-526.
    [43] Cao S, Guo L. Multi-objective Robust Initial Alignment Algorithm for Inertial Navigation System with Multiple Disturbances[J]. Aerospace Science and Technology, 2012, 21(1): 1-6.
    [44] Techy L, Morganseny K A, Wolsey C A. Long-baseline Acoustic Localization of the Seaglider Underwater Glider[C]//2011 American Control Conference. California, USA: IEEE, 2011: 3990-3995.
    [45] Van Uffelen L J, Howe B M, Nosal E M, et al. Long-range Glider Localization Using Broadband Acoustic Signals and a Linearized Model of Glider Motion[C]//2013 OCEANS. San Diego. US: IEEE, 2013: 1-4.
    [46] Van Uffelen L J, Nosal E M, Howe B M, et al. Estimating Uncertainty in Subsurface Glider Position Using Transmissions from Fixed Acoustic Tomography Sources[J]. The Journal of the Acoustical Society of America, 2013, 134(4): 3260-3271.
    [47] Van Uffelen L J, Howe B, Nosal E M, et al. Acoustic Localization of Seagliders in the Philippine Sea Using Broadband Transmissions from Moored Acoustic Sources[J]. The Journal of the Acoustical Society of America, 2013, 134(5): 3983.
    [48] Sun J, Yu J, Zhang A, et al. Navigation Positioning Algorithm for Underwater Gliders in Three-dimensional Space[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang, China: IEEE, 2015: 1269- 1274.
    [49] Woithe H C, Boehm D, Kremer U. Improving Slocum Glider Dead Reckoning Using a Doppler Velocity Log[C] //OCEANS’11. Kona: IEEE, 2011: 1-5.
    [50] Green D. Underwater Modem-based Navigation Aids[C]// 2010 7th International Symposium on Wireless Communication Systems. York, United Kingdom: IEEE, 2010: 606-610.
    [51] Dinc M, Hajiyev C. Integration of Navigation Systems for Autonomous Underwater Vehicles[J]. Journal of Marine Engineering & Technology, 2015, 14(1): 32-43.
    [52] Larsen M B. High Performance Doppler-inertial Navigation-experimental Results[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158). Providence, RI, USA: IEEE, 2000: 1449- 1456.
    [53] Jalving B, Gade K, Svartveit K, et a1. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System[J]. Modeling, Identification and Control, 2004, 25(4): 223-235.
    [54] 季龙. 水下滑翔机定位导航系统及实验研究[D]. 杭州: 浙江大学, 2006.
    [55] 黄海洋. 水下滑翔机GPS/SINS组合导航系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
    [56] 李辉. 水下滑翔机的系统设计与导航方法研究[D]. 青岛: 中国海洋大学, 2014.
    [57] Paley D A. Cooperative Control of Collective Motion for Ocean Sampling with Autonomous Vehicles[M]. Princeton: Princeton University, 2007.
    [58] Tang K H, Jiang M M, Weng J. Design of SINS/Phased Array DVL Integrated Navigation System for Underwater Vehicle Based on Adaptive Filtering[J]. Journal of Chinese Inertial Technology, 2013, 21(1): 65-70.
    [59] Huang H, Chen X, Lv C, et al. A Novel Hybrid Algorithm of Split-radix Fast Fourier Transform and Unscented Kalman Filter for Navigation Information Estimation[C]//2015 IEEE Metrology for Aerospace (Metro Aerospace). Florence, Italy: IEEE, 2015: 93-97.
    [60] Bouguezel S, Ahmad M O, Swamy M N S. Arithmetic Complexity of the Split-radix FFT Algorithms[C]//2005 IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, Pennsylvania, USA: IEEE, 2005.
    [61] 周吉雄. 自主式水下航行器导航算法研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
    [62] 吕志刚. 基于 SINS/DVL/GPS 的 AUV 组合导航标定方法的研究及其误差分析[J]. 舰船电子工程, 2018, 38 (6): 33-36.

    Lü Zhi-gang. Research on SINS/DVL/GPS Integrated Navigation System Calibration Method and the Error Analysis of AUV[J]. Ship Electronic Engineering, 2018, 38(6): 33-36.
    [63] Xu X S, Pan Y F, Zou H J. SINS/DVL Integrated Navigation System Based on Adaptive Filtering[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2015, 43(3): 95-99.
    [64] Polvani D. Magnetic Guidance of Autonomous Vehicles (part2) [C]//1987 5th International Symposium on Un-manned Untethered Submersible Technology. Shanghai, Chi-na: IEEE, 1987: 257-264.
    [65] Davis C. GPS-like Navigation Underground[C]//IEEE/ ION Position, Location and Navigation Symposium. Tianjin, China: IEEE, 2010: 1108-1111.
    [66] Kato N, Shigetomi T. Underwater Navigation for Long-range Autonomous Underwater Vehicles Using Geomagnetic and Bathymetric Information[J]. Advanced Robotics, 2009, 23(7-8): 787-803.
    [67] 蔡兆云, 魏海平, 任志新. 水下地磁导航技术研究综述[J]. 尖端科技, 2007(3): 28-30.
    [68] 余乐. 水下地磁导航航迹规划算法研究[D]. 南京: 东南大学, 2017.
    [69] Lin Y. Hausdorff-based RC and IESIL Combined Positioning Algorithm for Underwater Geomagnetic Navigation[J]. EURASIP Journal on Advances in Signal Processing, 2010(1): 1-12.
    [70] 胡小平, 吴美平, 穆华, 等. 水下地磁导航技术[M]. 北京: 国防工业大学出版社, 2013.
    [71] 穆华, 吴志添, 吴美平. 水下地磁/惯性组合导航试验分析[J]. 中国惯性技术学报, 2013, 21(3): 386-391.

    Mu Hua, Wu Zhi-tian, Wu Mei-ping. Experimental Analysis of Underwater Geomagnetic Field/inertial Integrated Navigation[J]. Journal of Chinese Inertial Technology, 2013, 21(3): 386-391.
    [72] Wu Z, Hu X, Wu M, et a1. An Experimental Evaluation of Autonomous Underwater Vehicle Localization on Geo-magnetic Map[J]. Applied Physics Letters, 2013, 103(10): 104102(1)-104102(4).
    [73] 刘明雍, 李红, 刘坤, 等. 地磁异常影响下的AUV仿生导航方法研究[J]. 西北工业大学学报, 2015, 33(4): 627- 632.

    Liu Ming-yong, Li Hong, Liu Kun, et al. Navigation Method of Autonomous Underwater Vehicle with Disturbance Due to Geomagnetic Anomaly Considered[J]. Journal of Northwestern Polytechnical University, 2015, 33 (4): 627-632.
    [74] Stuntz A, Liebel D, Smith R N. Enabling Persistent Autonomy for Underwater Gliders Through Terrain Based Navigation[C]//OCEANS 2015, Genova, Italy: IEEE, 2015.
    [75] Kato N, Shigetomi T. Underwater Navigation for Long-range Autonomous Underwater Vehicles Using Geomag- netic and Bathymetric Information[J]. Advanced Robotics, 2009, 23(7-8): 787-803.
    [76] Rossby T, Dorson D, Fontaine J. The RAFOS System[J]. Journal of Atmospheric and Oceanic Technology, 1986, 3 (4): 672-679.
    [77] Jones C, Allsup B, DeCollibus C. Slocum Glider: Expanding Our Understanding of the Oceans[C]//2014 Oceans. St. John’s: IEEE, 2014: 1-10.
    [78] Deffenbaugh M, Schmidt H, Bellingham J G. Acoustic Navigation for Arctic Under-ice AUV Missions[C]//OCEANS’93. Victoria, BC, Canada: IEEE, 1993: I204-I209.
    [79] Kukulya A, Plueddemann A, Austin T, et al. Under-ice Oper-ations with a REMUS-100 AUV in the Arctic[C]//2010 IEEE/ OES Autonomous Underwater Vehicles. Monterey, California, USA: IEEE, 2010: 1-8.
    [80] Jakuba M V, Roman C N, Singh H, et al. Long-Baseline Acoustic Navigation for Under-Ice Autonomous Underwater Vehicle Operations[J]. Journal of Field Robotics, 2008, 25(11-12): 861-879.
    [81] Hegrenæs ?, Gade K, Hagen O K, et al. Underwater Transponder Positioning and Navigation of Autonomous Underwater Vehicles[C]//OCEANS 2009. Biloxi, MS, USA: IEEE, 2009: 1-7.
    [82] Kaminski C, Crees T, Ferguson J, et al. 12 Days Under Ice—an Historic AUV Deployment in the Canadian High Arctic[C]//2010 IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA: IEEE, 2010: 1-11.
    [83] Doble M J, Wadhamsi P, Forrest A L, et al. Experiences from Two-years’ Through-ice AUV Deployments in the High Arctic[C]//2008 IEEE/OES Autonomous Underwater Vehicles. Woods Hole, MA, USA: IEEE, 2008: 1-7.
    [84] Walls J M, Eustice R M. An Origin State Method for Communication Constrained Cooperative Localization with Robustness to Packet Loss[J]. The International Journal of Robotics Research, 2014, 33(9): 1191-1208.
    [85] Bahr A, Walter M R, Leonard J J. Consistent Cooperative Localization[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 3415-3422.
    [86] Vaganay J, Leonard J J, Curcio J A, et al. Experimental Validation of the Moving Long Base-line Navigation Concept[C]//2004 IEEE/OES Autonomous Underwater Vehicles(IEEE Cat. No. 04CH37578). Sebasco, ME, USA, USA: IEEE, 2004: 59-65.
    [87] Webster S E, Freitag L E, Lee C M, et al. Towards Real-time Underice Acoustic Navigation at Mesoscale Ranges[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA: IEEE, 2015: 537- 544.
    [88] Claus B, Bachmayer R. Towards Navigation of Underwater Gliders in Seasonal Sea Ice[C]//2014 Oceans. St. John’s: IEEE, 2014: 1-8.
    [89] Claus B, Bachmayer R. Terrain Aided Navigation for an Underwater Glider[J]. Journal of Field Robotics, 2015, 32(7): 935-951.
    [90] Claus B, Bachmayer R. Towards Online Terrain Aided Navigation of Underwater Gliders[C]//2014 IEEE/OES Autonomous Underwater Vehicles (AUV). Oxford, MS, USA: IEEE, 2014: 1-5.
  • 加载中
计量
  • 文章访问数:  747
  • HTML全文浏览量:  15
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-24
  • 修回日期:  2019-08-20
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号