• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国水下滑翔机技术发展建议与思考

钱洪宝 卢晓亭

钱洪宝, 卢晓亭. 我国水下滑翔机技术发展建议与思考[J]. 水下无人系统学报, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001
引用本文: 钱洪宝, 卢晓亭. 我国水下滑翔机技术发展建议与思考[J]. 水下无人系统学报, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001
QIAN Hong-bao, LU Xiao-ting. Technical Development of Underwater Glider in China: Suggestions and Thoughts[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001
Citation: QIAN Hong-bao, LU Xiao-ting. Technical Development of Underwater Glider in China: Suggestions and Thoughts[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001

我国水下滑翔机技术发展建议与思考

doi: 10.11993/j.issn.2096-3920.2019.05.001
详细信息
    作者简介:

    钱洪宝(1977-), 男, 副研究员, 主要研究方向为海洋科技管理及海洋信息技术.

  • 中图分类号: U674.941; TP242

Technical Development of Underwater Glider in China: Suggestions and Thoughts

  • 摘要: 文中简要综述了国内外水下滑翔机(UG)技术发展现状, 回顾了我国UG发展的历程。重点介绍了国家科技计划对以UG为代表的海洋仪器装备的安排部署和支持情况、取得的技术进展和主要经验做法。最后, 从单体技术、协同组网和应用研究等3个方面对UG技术下一步的发展提出了意见和建议, 具体包括: 应进一步加强低功耗设计、最优路径规划与控制策略算法、多参数获取及搭载能力、数据质量标准和信息安全传输等核心关键技术的攻关, 加快UG单体技术的改进和优化升级; 可同步加强多UG编队协同组网观测技术研究, 提升其整体作业效率和观、探测效果; 应继续加强UG观测的功能拓展和海洋科学应用研究。文中的工作可为未来实现“透明海洋”目标提供数据支撑。

     

  • [1] Cui W C, Fu S X, Hu Z Q, et al. Encyclopedia of Ocean Engineering: Glider[M]. Singapore: Springer Singapore, 2019: 1-12.
    [2] Rudnick, Daniel L. Ocean Research Enabled by Underwater Gliders[J]. Annual Review of Marine Science, 2016, 8: 519-541.
    [3] Li S F, Wang S X, Zhang F M, et al. Constructing the Three-dimensional Structure of an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders [J/OL]. Journal of Atmospheric and Oceanic Technology. https://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-19-0006.1, 2019-09-23.
    [4] Qiu C H, Mao H B, Liu H L, et al. Deformation of a Warm Eddy in the Northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5551-5564.
    [5] Viglione G A, Thompson A F, Flexas M M, et al. Abrupt Transitions in Submesoscale Structure in Southern Drake Passage: Glider Observations and Model Results[J]. Journal of Physical Oceanography, 2018, 48(9): 2011- 2027.
    [6] Ananda P, Simon R, Antonio O, et al. A Multiplatform Experiment to Unravel Meso-and Submesoscale Processes in an Intense Front(AlborEx)[J]. Frontiers in Marine Science, 2017, 4: 1-16.
    [7] Andrew F, Thompson A L, Christian B, et al. Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer Instabilities from Gliders[J]. Journal of Physical Oceanography, 2016, 46(4): 1285-1307.
    [8] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [9] Glenn S, Schofield O, Kohut J, et al. The Trans-Atlantic Slocum Glider Expeditions: A Catalyst for Undergraduate Participation in Ocean Science and Technology[J]. MAR Marine Technology Society Journal, 2011, 45(1): 52-67.
    [10] Yu Jian-cheng, Jin Wen-ming, Tan Zhi-duo, et al. Development and Experiments of the Sea-Wing7000 Underwater Glider[C]//OCEANS 2017 MTS/IEEE Anchorage. New York: IEEE, 2017: 1-7.
    [11] Li H Z, Wang Y Hi, Wang S X. Underwater Glider Pet-rel-X—Glider rated to 10,000 m for Hadal Zone Research [J]. Sea Technology, 2019, 60(4): 18-22.
    [12] Wang S X, Li H Z, Wang Y H, et al. Dynamic Modeling and Motion Analysis for a Dual-Buoyancy-Driven Full Ocean Depth Glider[J]. Ocean Engineering, 2019, 187: 106163.
    [13] Yang M, Wang Y H, Wang S X, et al. Motion Parameter Optimization for Gliding Strategy Analysis of Underwater Gliders[J]. Ocean Engineering, 2019, 191: 106502.
    [14] Qiu C H, Mao H B, Wang Y H, et al. An Irregularly Shaped Warm Eddy Observed by Chinese Underwater Gliders[J]. Journal of Oceanography, 2019, 75(2): 139-148.
    [15] Ma W, Wang Y H, Yang S Q, et al. Observation of Internal Solitary Waves Using an Underwater Glider in the North-ern South China Sea[J]. Journal of Coastal Research, 2018, 345(5): 1188-1195.
    [16] Li S F, Wang S X, Zhang F M, et al. Observing an Anticy-clonic Eddy in the South China Sea Using Multiple Underwater Gliders[C]//OCEANS 2018 Charleston Online Proceedings. Charleston, SC, USA: IEEE, 2018.
    [17] Shu Y Q, Chen J, Li S, et al. Field-Observation for an Anticyclonic Mesoscale Eddy Consisted of Twelve Gliders and Sixty-Two Expendable Probes in the Northern South China Sea During Summer 2017[J]. Science China Earth Sciences, 2019, 62 (2): 451-458.
    [18] Qiu C H, Mao H B, Yu J C, et al. Sea Surface Cooling in the Northern South China Sea Observed Using Chinese Sea-wing Underwater Glider Measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 105: 111-118.
    [19] 宗正, 熊学军, 刘玉红, 等. 水下滑翔机的中尺度涡观测方法[J]. 海洋科学进展, 2018, 36(2): 180-187.

    Zong Zheng, Xiong Xue-jun, Liu Yu-hong, et al. The Method of Mesoscale Eddy Observation Using Underwater Glider[J]. Advances in Marine Science, 2018, 36(2): 180-187.
    [20] Shu Y Q, Xiu P, Xue H J, et al. Glider-observed Anticy-clonic Eddy in Northern South China Sea[J]. Aquatic Ecosystem Health & Management, 2016, 19(3): 233-241.
    [21] Ramos A G, García-Garrido V J, Mancho A M, et al. La-grangian Coherent Structure Assisted Path Planning for Transoceanic Autonomous Underwater Vehicle Missions [J]. Scientific Reports, 2018, 8: 1-9.
    [22] Pelland N A. Eddy Circulation, Heat and Salt Balances, and Ocean Metabolism: Observations from a Seaglider- Mooring Array at Ocean Station Papa[D]. Washington: University of Washington, 2016.
    [23] Rudnick D L, Gopalakrishnan G, Cornuelle B D. Cyclonic Eddies in the Gulf of Mexico: Observations by Underwater Gliders and Simulations by Numerical Model[J]. Journal of Physical Oceanography, 2015, 45(1): 313-326.
    [24] Rudnick D L, Davis R E, Sherman J T. Spray Underwater glider Operations[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(6): 1113-1122.
    [25] Claustre H, Beguery L, Pla P. SeaExplorer Glider Breaks Two World Records[J]. Sea Technology, 2014, 55(3): 19- 21.
    [26] 钱洪宝, 徐文, 张杰, 等. 对海洋仪器设备规范化海上试验的认识与思考[J]. 海洋通报, 2016, 35(4): 386-389.

    Qian Hong-bao, Xu Wen, Zhang Jie, et al. Overview and Further Thoughts on the Standardized Sea Trials for Marine Instruments[J]. Marine Science Bulletin, 2016, 35(4): 386-389.
    [27] 马伟, 王延辉, 徐田雨. 微结构湍流测量水下滑翔机设计与试验研究[J]. 机械工程学报, 2017, 53(9): 22-29.

    Ma Wei, Wang Yan-hui, Xu Tian-yu. Design and Sea Trials of the Underwater Glider for Micro-structure Turbulence Measurement[J]. Journal of Mechanical Engineering, 2017, 53(9): 22-29.
    [28] 刘曙光, 熊学军, 张宏伟, 等. 水下滑翔机内波观测方法[J]. 海洋科学进展, 2018, 36(2): 171-179.

    Liu Shu-guang, Xiong Xue-jun, Zhang Hong-wei, et al. Observation of Internal Waves by Using Underwater Glider[J]. Advances in Marine Science, 2018, 36(2): 171- 179.
    [29] 刘璐, 兰世泉, 肖灵, 等. 基于水下滑翔机的海洋环境噪声测量系统[J]. 应用声学, 2017, 36(4): 370-376.

    Liu Lu, Lan Shi-quan, Xiao Ling, et al. Measurement System of Ambient Sea Noise Based on the Underwater Glider[J]: Technical Acoustics, 2017, 36(4): 370-376.
    [30] Liu L, Xiao L, Lan S Q, et al. Using Petrel II Glider to Analyze Underwater Noise Spectrogram in the South China Sea[J]. Acoustics Australia, 2018, 46(1): 151-158.
    [31] Liu F, Wang Y H, Wu Z L, et al., Motion Analysis and Trials of the Deep Sea Hybrid Underwater Glider Petrel-II [J]. China Ocean Engineering, 2017, 31(1): 55-62.
    [32] Sang H Q, Zhou Y, Sun X J, et al. Heading Tracking Control with an Adaptive Hybrid Control for Under Actuated Underwater Glider[J]. ISA Transactions, 2018, 80: 554-563.
    [33] 张艺腾, 张明明, 王延辉, 等. 混合驱动水下滑翔机变翼系统研究[J]. 机械设计, 2018, 35(6): 1-8.

    Zhang Yi-teng, Zhang Ming-ming, Wang Yan-hui, et al. Study on Controllable Wings System of Hybrid-driven Underwater Gliders[J]. Journal of Machine Design, 2018, 35(6): 1-8.
    [34] Xue D Y, Wu Z L, Wang Y H, et al. Coordinate Control, Motion Optimization and Sea Experiment of a Fleet of Petrel-II Gliders[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 17.
    [35] Sun T S, Yang M Y, Wang Y H, et al. Parametric Design and Experimental Verification of Cicada-wing-inspired Controllable Wing Mechanism for Underwater Glider[C]// The 15th IFToMM World Congress in Mechanism and Machine Science. Poland: Springer, 2019: 23-32.
    [36] Yang Y N, Wang Y H, Ma Z S, et al. A Thermal Engine for Underwater Glider Driven by Ocean Thermal Energy[J]. Applied Thermal Engineering, 2016, 99: 455-464.
    [37] Wang G H, Yang Y N, Wang S X, et al. Efficiency Analysis and Experimental Validation of the Ocean Thermal Energy Conversion with Phase Change Material for Underwater Vehicle[J]. Applied Energy, 2019, 248: 475-488.
    [38] Da L, Song B W, Pan G, et al. Winglet Effect on Hydro-dynamic Performance and Trajectory of a Blended-wing-body Underwater Glider[J]. Ocean Engineering, 2019, 188: 106303.
    [39] Ye P C, Pan G. Design and Optimization of a Blended- Wing-Body Underwater Glider[J]. IOP Conference Series: Materials Science and Engineering, 2019, 491: 1-8.
    [40] Ma W, Wang Y H, Wang S X, et al. Optimization of Hydrodynamic Parameters for Underwater Glider Based on the Electromagnetic Velocity Sensor[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 5019-5032.
    [41] Ma W, Wang Y H, Wang S X, et al. Absolute Current Estimation and Sea-Trial Application of Glider-Mounted AD2CP[J]. Journal of Coastal Research. https://www. jcronline.org/doi/abs/10.2112/JCOASTRES-D-18-00176.1. 2019-07-22.
  • 加载中
计量
  • 文章访问数:  919
  • HTML全文浏览量:  24
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-30
  • 修回日期:  2019-09-20
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号