• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜伏式武器水下施放后纵平面运动仿真

练永庆 宋保维 李宗吉

练永庆, 宋保维, 李宗吉. 潜伏式武器水下施放后纵平面运动仿真[J]. 水下无人系统学报, 2019, 27(4): 413-419. doi: 10.11993/j.issn.2096-3920.2019.04.008
引用本文: 练永庆, 宋保维, 李宗吉. 潜伏式武器水下施放后纵平面运动仿真[J]. 水下无人系统学报, 2019, 27(4): 413-419. doi: 10.11993/j.issn.2096-3920.2019.04.008
LIAN Yong-qing, SONG Bao-wei, LI Zong-ji. Simulation on Motion in Vertical Plane of a Latent Weapon Released Underwater[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 413-419. doi: 10.11993/j.issn.2096-3920.2019.04.008
Citation: LIAN Yong-qing, SONG Bao-wei, LI Zong-ji. Simulation on Motion in Vertical Plane of a Latent Weapon Released Underwater[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 413-419. doi: 10.11993/j.issn.2096-3920.2019.04.008

潜伏式武器水下施放后纵平面运动仿真

doi: 10.11993/j.issn.2096-3920.2019.04.008
详细信息
    作者简介:

    练永庆(1973-), 男, 博士, 副研究员, 研究方向为水中兵器总体及发射技术.

  • 中图分类号: TJ012.3; E925.2

Simulation on Motion in Vertical Plane of a Latent Weapon Released Underwater

  • 摘要: 为了研究潜伏式武器自潜艇外部施放后在纵平面内的运动规律以及使用分离减速方案实现安全坐底的可行性, 将武器施放后的运动过程分为2个阶段, 第1阶段为武器下沉直至分离前, 第2阶段为武器分离开始直至武器完全坐底。针对这2个不同的运动阶段分别推导了相关数学模型, 并进行了整个运动过程的仿真计算, 分析了潜伏式武器水下施放后初始阶段的运动特性, 得出了分离减速坐底的规律。仿真结果证明了潜伏式武器采用分离减速方案可安全坐底。

     

  • [1] 宋保维, 朱信尧, 梁庆卫, 等. 潜伏式无人水下航行器概念设计[J]. 火力指挥与控制, 2010, 35(8): 107-110.

    Song Bao-wei, Zhu Xin-yao, Liang Qing-wei, et al. Con-ceptual Design of Latent Unmanned Underwater Vehicle[J]. Fire Control and Command Control, 2010, 35(8): 107-110.
    [2] 董阳泽, 刘平香. 远程潜伏式水声对抗器材概念及技术[J]. 舰船电子工程, 2007, 27(6): 7-9.

    Dong Yang-ze, Liu Ping-xiang. Primary Study on Long- range Underwater Acoustic Countermeasure[J]. Ship Electronic Engineering, 2007, 27(6): 7-9.
    [3] 周涛, 张晨光. 潜伏式鱼雷攻击性能分析[J]. 鱼雷技术, 2014, 22(2): 7-13.

    Zhou Tao, Zhang Chen-guang. Analysis on Attack Perfor- mance of Sleeping Torpedo[J]. Torpedo Technology, 2014, 22(2): 7-13.
    [4] 宋保维, 陈良军, 丁浩, 等. UUV扑翼驱动机构设计及其运动仿真[J]. 机械设计, 2011, 28(4): 36-39.

    Song Bao-wei, Chen Liang-jun, Ding Hao, et al. Design and Kinematics Simulation of UUV’s Flapping Wing[J]. Journal of Machine Design, 2011, 28(4): 36-39.
    [5] 王金强, 王聪, 魏英杰, 等. 飞翼式混合驱动水下滑翔机水动力与运动特性研究[J]. 兵工学报, 2018, 39(8): 1556-1564.

    Wang Jin-qiang, Wang Cong, Wei Ying-jie, et al. Hydrodynamic Properties and Motion Analysis of Hybrid-driven Underwater Glider with Flying Wings[J]. Acta Armamentarii, 2018, 39(8): 1556-1564.
    [6] 潘瑛, 徐德民. 自主式水下航行器空间运动矢量建模与仿真[J]. 系统仿真学报, 2003, 15(4): 538-540.

    Pan Ying, Xu De-min. Vector Modeling and Simulation of the Autonomous Underwater Vehicle in Spatial Motions[J]. Acta Simulata Systematica Sinica, 2003, 15(4): 538-540.
    [7] 胡坤, 张洪刚, 徐亦凡. 潜艇水下空间机动仿真与分析[J]. 计算机仿真, 2006, 23(5): 10-13.

    Hu Kun, Zhang Hong-gang, Xu Yi-fan. Simulation Study and Analysis on Underwater Space Motion of Submarine[J]. Computer Simulation, 2006, 23(5): 10-13.
    [8] 刘正元. 潜水器大攻角范围内运动的仿真[J]. 船舶力学, 2005, 9(2): 54-59.

    Liu Zheng-yuan. Simulation of Submersible Motion in Large Attack Angle[J]. Journal of Ship Mechanics, 2005, 9(2): 54-59.
    [9] 潘彬彬, 崔维成, 叶聪, 等. 蛟龙号载人潜水器无动力潜浮运动分析系统开发[J]. 船舶力学, 2012, 16(2): 58-71.

    Pan Bin-bin, Cui Wei-cheng, Ye Cong, et al. Development of the Unpowered Diving and Floating Prediction System for Deep Manned Submersible “JIAOLONG”[J]. Journal of Ship Mechanics, 2012, 16(2): 58-71.
    [10] Gertler M, Hagen G R. Standard Equations of Motion for Submarine Simulation[R]. Washington D C: Naval Ship Research and Development Center, 1967.
  • 加载中
计量
  • 文章访问数:  405
  • HTML全文浏览量:  8
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-19
  • 修回日期:  2019-12-18
  • 刊出日期:  2019-08-31

目录

    /

    返回文章
    返回
    服务号
    订阅号