• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高速水下航行器控制方法研究热点综述

刘 伟 范 辉 吕建国

刘 伟, 范 辉, 吕建国. 超高速水下航行器控制方法研究热点综述[J]. 水下无人系统学报, 2019, 27(4): 369-378. doi: 10.11993/j.issn.2096-3920.2019.04.002
引用本文: 刘 伟, 范 辉, 吕建国. 超高速水下航行器控制方法研究热点综述[J]. 水下无人系统学报, 2019, 27(4): 369-378. doi: 10.11993/j.issn.2096-3920.2019.04.002
LIU Wei, FAN Hui, LÜ Jian-guo. Review of Research Hotspots of Superspeed Undersea Vehicle Control Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 369-378. doi: 10.11993/j.issn.2096-3920.2019.04.002
Citation: LIU Wei, FAN Hui, LÜ Jian-guo. Review of Research Hotspots of Superspeed Undersea Vehicle Control Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 369-378. doi: 10.11993/j.issn.2096-3920.2019.04.002

超高速水下航行器控制方法研究热点综述

doi: 10.11993/j.issn.2096-3920.2019.04.002
详细信息
    作者简介:

    刘 伟(1994-), 男, 在读硕士, 主要研究方向为水下航行器控制与导航.

  • 中图分类号: TJ630.33; U674.941

Review of Research Hotspots of Superspeed Undersea Vehicle Control Methods

  • 摘要: 超高速水下航行器借助超空泡减阻技术可以达到常规全沾湿航行器难以企及的200 kn以上的高航速, 对这类航行器的研究近年来呈现出由机理阐释向应用研究发展的主导趋势。在此趋势下, 针对超高速航行器控制方法的研究日益成为该领域的热点。文中首先给出了超高速水下航行器的概念, 继而综述了国内外最新研究进展, 随后提出并分析了若干热点研究问题, 包括对被广泛引用的Dzielski模型的讨论, 以及非线性滑行力、系统不确定性等动力学特性的研究热点, 和线型控制、反馈线性化、变结构控制、模糊控制等热点控制方法的优劣对比等, 最后对研究现状进行了总结, 展望了未来的发展方向, 提出对被控对象描述范围的拓展将是超高速水下航行器控制领域未来发展的主要驱动力, 同时智能控制也将成为超高速水下航行器控制方法的重要研究方向之一。

     

  • [1] 刘富明. 超空泡航行器纵向运动控制[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [2] 李凝, 杨飚. 德国轻型超空泡鱼雷研发现状及展望[J]. 鱼雷技术, 2008, 16(2): 1-4.

    Li Ning, Yang Biao. R&D Status Quo and Perspective of Light weight Supercavitating Torpedo in Germany[J]. Torpedo Technology, 2008, 16(2): 1-4.
    [3] 王改娣. 超空泡鱼雷技术特点分析[J]. 鱼雷技术, 2007, 15(5): 1-4.

    Wang Gai-di. Analysis of Technical Features of Supercavitating Torpedoes[J]. Torpedo Technology, 2007, 15(5): 1-4.
    [4] 赵新华, 孙尧, 安伟光, 等. 超空泡航行器控制问题研究进展[J]. 力学进展, 2009, 39(5): 537-545.

    Zhao Xin-hua, Sun Yao, An Wei-guang, et al. Advances in Supercavitating Vehicle Control Technology[J]. Advances in Mechanics, 2009, 39(5): 537-545.
    [5] Rand R, Pratap R, Ramani D. Impact Dynamics of a Supercavitating Underwater Projectile[R]. ASME Design Engineering Technical Conferences. Sacramento, California: ASME, 1997
    [6] 吴振. 基于水洞试验的通气超空泡航行器的控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
    [7] Savchenko Y N. Control of Supercavitation Flow and Stability of Supercavitation Motion of Bodies[R]. RTO-EN010 AVT Lecture Series on Supercavitating Flows. Brussels. Belgium, 2001: 313-329.
    [8] Escobar D, Vollmer D, Arndt R. A Dynamic Test Bed for Supercavitating Vehicle Control[J]. Journal of Physics: Conference Series, 2015, 656(1): 012144.
    [9] Escobar D, Balas G, Anrdt R. Modeling, Control, and Experimental Validation of a High-Speed Supercavitating Vehicle[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 362-373.
    [10] Escobar D, Anrdt R. Robust Control of a Small-Scale Supercavitating Vehicle: from Modeling to Testing[J]. Ocean Engineering, 2018, 160: 412-424.
    [11] Mardani A, Danesh M, Karimi B. Fuzzy/Neuro-Fuzzy Depth and Pitch Regulating Control of a Supercavitating Vehicle[C]//The 19th Iranian Conference on Electrical Engineering. Tehran, Iran: ICEE, 2011.
    [12] Seonhong K, Nakwan K. Neural Network Based Adaptive Control for a Supercavitating Vehicle in Transition Phase[J]. Journal of Marine Science and Technology, 2015, 20(3): 454-466.
    [13] Yahyazadeh M, Ranjbar A. High Performance Tracking of High-Speed Supercavitating Vehicles with Uncertain Parameters Using Novel Parameter-Optimal Iterative Learning Control[J]. Robotica, 2015, 33(8): 1653-1670.
    [14] Mirzaei M, Eghtesad M, Alishahi M M. A New Robust Fuzzy Method for Unmanned Flying Vehicle Control[J]. Journal of Central South University, 2015, 22(6): 2166- 2182.
    [15] 许德智, 姜斌, 钱默抒. 基于内外环设计的超空泡航行器容错控制[J]. 济南大学学报, 2014, 28(1): 60-64.

    Xu De-zhi, Jiang Bin, Qian Mo-shu. Fault Tolerance Control of Supercavitating Vehicles Using Inner and Outer Loop Design[J]. Journal of University of Jinan, 2014, 28(1): 60-64.
    [16] 余晨菲, 林鹏, 周军. 基于推力矢量/水舵复合的超空泡导弹变结构控制研究[J]. 西北工业大学学报, 2014, 32(5): 805-810.

    Yu Chen-fei, Lin Peng, Zhou Jun. Variable Structure Re-search on Supercavitating Vehicle Based on Thrust Vec-tor/Rudder Combination[J]. Journal of Northwestern Polytechnical University, 2014, 32(5): 805-810.
    [17] 韩云涛, 强宝琛, 孙尧, 等. 超空泡航行器鲁棒 绝对稳定控制[J]. 哈尔滨工程大学学报, 2015, 36(10): 1370-1374.

    Han Yun-tao, Qiang Bao-chen, Sun Yao, et al. Robust Absolute Stability Control for A Supercavitating Vehicle[J]. Journal of Harbin Engineering University, 2015, 36(10): 1370-1374.
    [18] 韩云涛, 强宝琛, 孙尧, 等. 基于圆判据的超空泡航行器非线性控制研究[J]. 工程力学, 2015, 32(8): 236-242.

    Han Yun-tao, Qiang Bao-chen, Sun Yao, et al. Non-linear Control Research on Supercavitating Vehicles Based on Circle Criterion[J]. Engineering Mechanics, 2015, 32(8): 236-242.
    [19] 韩云涛, 强宝琛, 孙尧, 等. 基于LPV的超空泡航行器 抗饱和控制[J]. 系统工程与电子技术, 2016, 38(2): 357-361.

    Han Yun-tao, Qiang Bao-chen, Sun Yao, et al. Anti-windup Control for A Supercavitating Vehicle Based on LPV[J]. Systems Engineering and Electronics, 2016, 38(2): 357-361.
    [20] 陈超倩, 曹伟, 王聪, 等. 超空泡航行器最优控制建模与仿真[J]. 北京理工大学学报, 2016, 36(10): 1031-1036.

    Chen Chao-qian, Cao Wei, Wang Cong, et al. Modeling and Simulating of Supercavitating Vehicles Based on Optimal Control[J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 1031-1036.
    [21] 陈超倩, 曹伟, 王聪, 等. 超空泡航行器加速段控制设计[J]. 哈尔滨工业大学学报, 2016, 48(8): 147-151.

    Chen Chao-qian, Cao Wei, Wang Cong, et al. Acceleration Stage Control Design for Supercavitating Vehicle[J]. Journal of HarbinInstitute of Technology, 2016, 48(8): 147-151.
    [22] 李洋, 刘明雍, 张小件, 等. 非全包裹超空泡航行器建模与反演变结构控制[J]. 西北工业大学学报, 2016, 34(2): 215-221.

    Li Yang, Liu Ming-yong, Zhang Xiao-jian, et al. Modeling and Back Stepping Variable Structure Control for a In-complete Encapsulated Supercavitating Vehicle[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 215-221.
    [23] 李洋, 刘明雍, 杨盼盼, 等. 非全包裹超空泡航行器建模与姿轨控制[J]. 控制理论与应用, 2017, 34(7): 885- 894.

    Li Yang, Liu Ming-yong, Yang Pan-pan, et al. Modeling and Attitude-Orbit Control for Incomplete-Encapsulated Supercavitating Vehicles[J]. Control Theory & Applications, 2017, 34(7): 885-894.
    [24] 李洋, 刘明雍, 张小件. 基于自适应RBF神经网络的超空泡航行体反演控制[J/OL]. 自动化学报, 2018, 44(X): 1-10. [2018-04-18]. http://kns.cnki.net/kcms/detail/11.21 09.TP.20180418.1444.004.html.

    Li Yang, Liu Ming-yong, Zhang Xiao-jian. Adaptive RBF Network Based on Backstepping Control for Supercavitating Vehicles[J/OL]. Acta Automatica Sinica, 2018, 44(X): 1-10. [2018-04-18]. http://kns.cnki.net/kcms/detail /11.21 09.TP.20180418.1444.004.html.
    [25] 何朕, 庞爱平. 超空泡航行器的反馈控制设计[J]. 电机与控制学报, 2017, 21(8): 101-108.

    He Zhen, Pang Ai-ping. Feedback Control Design for Su-percavitating Vehicles[J]. Electric Machines and Control, 2017, 21(8): 101-108.
    [26] 庞爱平, 何朕. 超空泡航行器的扰动观测器补偿设计[J]. 电机与控制学报, 2018, 22(1): 107-113.

    Pang Ai-ping, He Zhen. Disturbance Observer and Compensation Design for Supercavitating Vehicles[J]. Electric Machines and Control, 2018, 22(1): 107-113.
    [27] 高浩楠. 水下高速航行器制导与控制一体化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
    [28] 王志学. 水下高速航行器纵向控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [29] 赵丹. 超空泡航行器双通道控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [30] 韩云涛, 程章龙, 李盼盼, 等. 超空泡航行器LPV鲁棒变增益控制[J]. 华中科技大学学报(自然科学版), 2017, 45(7): 127-132.

    Han Yun-tao, Cheng Zhang-long, Li Pan-pan, et al. Robust Variable Gain Control for Supercavitating Vehicle Based on LPV[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2017, 45(7): 127-132.
    [31] 范辉. 超空泡航行器动力学建模与仿真研究[D]. 西安: 西北工业大学, 2009.
    [32] Dzielski J, Kurdila A. A Benchmark Control Problem for Supercavitating Vehicles and Aninitial Investigation of Solutions[J]. Journal of Vibration and Control, 2003, 9(7): 791-804.
    [33] Nguyen V, Balachandran B. Supercavitating Vehicles With Noncylindrical, Nonsymmetriccavities: Dynamics and Instabilities[J]. Journal of Computational & Nonlinear Dynamics, 2011, 8(2): 219-242.
    [34] Lv R, Yu K, Wei Y. Adaptive Robust Controller for Supercavitating High-Speed Bodies[J]. Journal of Harbin Institute of Technology, 2011, 18(4): 77-81.
    [35] Qiang B, Han Y, Sun Y. Absolute Stability Control of Supercavitating Vehicles Based on Backstepping[C//Proceeding of 2014 IEEE International Conference on Mechatronics and Automation. Tianjin, China: IEEE, 2014: 1918-1923.
    [36] Hassouneh M A, Nguyen V, Balachandran B, et al. Stability Analysis and Control of Supercavitating Vehicles with Advection Delay[J]. Journal of Computational and Non-linear Dynamics, 2013, 8(2): 021003-1-021003-10.
    [37] Sanabria D S, Balas G. Planing Avoidance Control for Supercavitating Vehicles[C]//2014 American Control Conference(ACC). Portland, Oregon, USA: ACC, 2014.
    [38] 魏英杰, 王京华, 曹伟. 水下超空泡航行器非线性动力学与控制[J]. 振动与冲击, 2009, 28(6): 179-182.

    Wei Ying-jie, Wang Jing-hua, Cao Wei. Nonlinear Dynamics and Control of Underwater Supercavitating Vehicle[J]. Journal of Vibration and Shock, 2009, 28(6): 179-182.
    [39] 王京华, 张嘉钟, 魏英杰, 等. 超空泡高速航行器动力学建模与控制设计[J]. 哈尔滨工业大学学报, 2010, 42(9): 1351-1355.

    Wang Jing-hua, Zhang Jia-zhong, Wei Ying-jie, et al. Dy-namics Modeling and Control Design for a High-speed Supercavitating Vehicle[J]. Journal of Harbin Institute of Technology, 2010, 42(9): 1351-1355.
    [40] 王雨. 水下高速航行器航向控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [41] 田宏奇. 滑模控制理论及其应用[M]. 武汉: 武汉出版社, 1995.
    [42] 曾光奇, 胡均安. 模糊控制理论与工程应用[M]. 武昌: 华中科技大学出版社, 2006.
  • 加载中
计量
  • 文章访问数:  653
  • HTML全文浏览量:  3
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 修回日期:  2019-04-02
  • 刊出日期:  2019-08-31

目录

    /

    返回文章
    返回
    服务号
    订阅号