• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下磁耦合谐振无线电能传输技术及应用研究综述

文海兵 宋保维 张克涵 闫争超

文海兵, 宋保维, 张克涵, 闫争超. 水下磁耦合谐振无线电能传输技术及应用研究综述[J]. 水下无人系统学报, 2019, 27(4): 361-368. doi: 10.11993/j.issn.2096-3920.2019.04.001
引用本文: 文海兵, 宋保维, 张克涵, 闫争超. 水下磁耦合谐振无线电能传输技术及应用研究综述[J]. 水下无人系统学报, 2019, 27(4): 361-368. doi: 10.11993/j.issn.2096-3920.2019.04.001
WEN Hai-bing, SONG Bao-wei, ZHANG Ke-han, YAN Zheng-chao. Underwater Magnetically-Coupled Resonant Wireless Power Transfer Technology and Its Applications: A Review[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 361-368. doi: 10.11993/j.issn.2096-3920.2019.04.001
Citation: WEN Hai-bing, SONG Bao-wei, ZHANG Ke-han, YAN Zheng-chao. Underwater Magnetically-Coupled Resonant Wireless Power Transfer Technology and Its Applications: A Review[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 361-368. doi: 10.11993/j.issn.2096-3920.2019.04.001

水下磁耦合谐振无线电能传输技术及应用研究综述

doi: 10.11993/j.issn.2096-3920.2019.04.001
基金项目: 陕西省自然科学基础研究计划项目资助(2018JM5033)
详细信息
    作者简介:

    文海兵(1989-), 男, 在读博士, 主要研究方向为水下无线电能传输技术.

  • 中图分类号: TJ6; U674.941; TM154

Underwater Magnetically-Coupled Resonant Wireless Power Transfer Technology and Its Applications: A Review

  • 摘要: 相较于传统的湿插拔水下电能补给方式, 磁耦合谐振式无线电能传输(MCR-WPT)技术具有绝缘性好、结构简单、电能传输安全性高、操作方便等优势, 在水下航行器等海洋机电设备电能补给方面有良好的应用前景。文章首先介绍了MCR-WPT技术的基本结构和工作原理, 重点关注了海洋环境下MCR-WPT的特殊性; 分别从机理研究和应用研究两方面阐释了水下MCR-WPT技术的研究现状与热点问题; 最后分析了该技术待解决的关键问题及其发展趋势, 主要包括电能传输机理、电磁耦合器设计、系统海洋环境适应性、电磁兼容性以及新材料的应用。文中研究旨在为我国水下MCR-WPT技术的发展和应用提供参考。

     

  • [1]  [1] 聂卫东, 马玲, 张博, 等. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017, 25(4): 310-318.

    Nie Wei-dong, Ma Ling, Zhang Bo, et al. A Brief Analysis of United States Unmanned Underwater Combat System[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 310-318.
    [2] 海洋地质国家重点实验室(同济大学). 海底科学观测的国际进展[M]. 上海: 同济大学出版社, 2017.
    [3] Painter H, Flynn J. Current and Future Wet-Mate Connector Technology Developments for Scientific Seabed Observatory Applications[C]//Oceans. Boston, USA: IEEE, 2006.
    [4] 牛王强. 水下无线电能传输研究进展[J]. 南京信息工程大学学报(自然科学版), 2017, 9(1): 46-53.

    Niu Wang-qiang. The State of the Art of Underwater Wireless Power Transfer[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2017, 9(1): 46-53.
    [5] Kurs A, Karalis A, Moffatt R, et al. Wireless Power Transfer via Strongly Coupled Magnetic Resonances[J]. Science, 2007, 317(5834): 83-86.
    [6] 周杰. 海水环境下非接触电能传输效率的优化研究[D]. 杭州: 浙江大学, 2014.
    [7] Zhang K, Duan Y, Zhu Z, et al. A Coil Structure Applied in WPT System for Reducing Eddy Loss[C]//IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). Chongqing, China: IEEE, 2017.
    [8] 李泽松. 基于电磁感应原理的水下非接触式电能传输技术研究[D]. 杭州: 浙江大学, 2010.
    [9] Zhou J, Li D, Chen Y. Frequency Selection of an Inductive Contactless Power Transmission System for Ocean Observing[J]. Ocean Engineering, 2013, 60: 175-185.
    [10] Cheng Z, Lei Y, Song K, et al. Design and Loss Analysis of Loosely Coupled Transformer for an Underwater High-Power Inductive Power Transfer System[J]. IEEE Transactions on Magnetics, 2015, 51(7): 1-10.
    [11] 张克涵, 阎龙斌, 闫争超, 等. 基于磁共振的水下非接触式电能传输系统建模与损耗分析[J]. 物理学报, 2016, 65(4): 330-338.

    Zhang Ke-han, Yan Long-bin, Yan Zheng-chao, et al. Modeling and Analysis of Eddy-Current Loss of Under-water Contact-Less Power Transmission System Based on Magnetic Coupled Resonance[J]. Acta Physica Sinica, 2016, 65(4): 330-338.
    [12] 阎龙斌. 基于磁共振的水下非接触式电能传输系统设计[D]. 西安: 西北工业大学, 2016.
    [13] Wang C S, Covic G A, Stielau O H. Power Transfer Ca-pability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 148-157.
    [14] 侯佳. 变参数条件下感应式无线电能传输系统的补偿网络的研究[D]. 南京: 南京航空航天大学, 2017.
    [15] 马运季. 磁耦合谐振式无线电能传输特性的分析与研究[D]. 兰州: 兰州交通大学, 2017.
    [16] 富一博. 水下测量装置的无线电能传输技术研究[D]. 北京: 中国舰船研究院, 2015.
    [17] 夏晨阳, 张彦兵, 伍小杰, 等. 基于阻抗变换的稳频高效非接触电能传输系统[J]. 西南交通大学学报, 2012, 47(5): 814-819.

    Xia Chen-yang, Zhang Yan-bing, Wu Xiao-jie, et al. Contactless Power Transfer System with Stabilized Frequency and High Efficiency Based on Impedance Conversion[J]. Journal of Southwest Jiaotong University, 2012, 47(5): 814-819.
    [18] Fu M, Yin H, Zhu X, et al. Analysis and Tracking of Optimal Load in Wireless Power Transfer Systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3952-3963.
    [19] Bradley A M, Feezor M D, Singh H, et al. Power Systems for Autonomous Underwater Vehicles[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 526-538.
    [20] Kojiya T, Sato F, Matsuki H, et al. Construction of Non-Contacting Power Feeding System to Underwater Vehicle Utilizing Electromagnetic Induction[C]//Oceans. Brest, France: IEEE, 2005.
    [21] Assaf T, Stefanini C, Dario P. Autonomous Underwater Biorobots: A Wireless System for Power Transfer[J]. IEEE Robotics & Automation Magazine, 2013, 20(3): 26-32.
    [22] Pyle D, Granger R, Geoghegan B, et al. Leveraging a Large UUV Platform with a Docking Station to Enable Forward Basing and Persistence for Light Weight AUVs[C]//Oceans. Hampton Roads, USA: IEEE, 2012.
    [23] Mcginnis T, Henze C P, Conroy K. Inductive Power System for Autonomous Underwater Vehicles[C]//Oceans. Vancouver, Canada: IEEE, 2008.
    [24] Yoshioka D, Sakamoto H, Ishihara Y, et al. Power Feeding and Data-Transmission System Using Magnetic Coupling for an Ocean Observation Mooring Buoy[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2663-2665.
    [25] Xu J, Li X, Xie Z, et al. Research on a Multiple-Receiver Inductively Coupled Power Transfer System for Mooring Buoy Applications[J]. Energies, 2017, 10(4): 1-18.
    [26] Fang C, Li X, Xie Z, et al. Design and Optimization of an Inductively Coupled Power Transfer System for the Underwater Sensors of Ocean Buoys[J]. Energies, 2017, 10(1): 1-18.
    [27] Lin M, Li D, Yang C. Design of an ICPT System for Battery Charging Applied to Underwater Docking Systems[J]. Ocean Engineering, 2017(145): 373-381.
    [28] 王司令, 宋保维, 段桂林, 等. 水下航行器非接触式电能传输技术研究[J]. 电机与控制学报, 2014, 18(6): 36-41.

    Wang Si-ling, Song Bao-wei, Duan Gui-lin, et al. Study on Non-Contact Power Transmission of Underwater Unmanned Vehicle[J]. Electric Machines and Control, 2014, 18(6): 36-41.
    [29] Kan T, Mai R, Mercier P P, et al. A Three-Phase Wireless Charging System for Lightweight Autonomous Underwater Vehicles[C]//IEEE Applied Power Electronics Conference and Exposition(APEC). Tampa, USA: IEEE, 2017.
    [30] Lu M, Ngo K D T. A Fast Method to Optimize Efficiency and Stray Magnetic Field for Inductive-Power-Transfer Coils Using Lumped-Loops Model[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3065-3075.
    [31] Syahroni N, Suparno H W, Budiman H. Characteristics of RAMS Coatings Using Non-Ferrous Materials for AUVs [C]//International Electronics Symposium(IES). Denpasar, Indonesia: IEEE, 2016.
    [32] 周洪, 蒋燕, 胡文山, 等. 磁共振式无线电能传输系统应用的电磁环境安全性研究及综述[J]. 电工技术学报, 2016, 31(2): 1-12.

    Zhou Hong, Jiang Yan, Hu Wen-shan, et al. Review and Research on Health and Safety Issues for Magnetically- Coupled Resonant Wireless Power Transfer Systems[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 1-12.
    [33] Chung Y D, Lee C Y, Kim D W, et al. Operating Charac-teristics of Contactless Power Transfer From HTS Antenna to Copper Receiver With Inserted Resonator Through Large Air Gap[J]. IEEE Transactions on Applied Superconductivity, 2013, 24(3): 1-5.
    [34] Wang B, Teo K H, Nishino T, et al. Experiments on Wireless Power Transfer with Metamaterials[J]. Applied Physics Letters, 2011, 98(25): 254101-1-254101-3.
    [35] Hu Y, Kang L, Zheng W, et al. Impedance Matching Control Method for an Underwater Magnetic Resonance- Based Wireless Power Transfer System with Metamaterials[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(15): 2003-2019.
  • 加载中
计量
  • 文章访问数:  627
  • HTML全文浏览量:  1
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 修回日期:  2019-05-29
  • 刊出日期:  2019-08-31

目录

    /

    返回文章
    返回
    服务号
    订阅号