• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁信标的水下SLAM方法

常 帅 付晓梅 张翠翠 赵玉新 杜 雪

常 帅, 付晓梅, 张翠翠, 赵玉新, 杜 雪. 基于磁信标的水下SLAM方法[J]. 水下无人系统学报, 2019, 27(3): 277-283. doi: 10.11993/j.issn.2096-3920.2019.03.007
引用本文: 常 帅, 付晓梅, 张翠翠, 赵玉新, 杜 雪. 基于磁信标的水下SLAM方法[J]. 水下无人系统学报, 2019, 27(3): 277-283. doi: 10.11993/j.issn.2096-3920.2019.03.007
CHANG Shuai, FU Xiao-mei, ZHANG Cui-cui, ZHAO Yu-xin, DU Xue. An Underwater SLAM Approach Using Magnetic Beacons[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 277-283. doi: 10.11993/j.issn.2096-3920.2019.03.007
Citation: CHANG Shuai, FU Xiao-mei, ZHANG Cui-cui, ZHAO Yu-xin, DU Xue. An Underwater SLAM Approach Using Magnetic Beacons[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 277-283. doi: 10.11993/j.issn.2096-3920.2019.03.007

基于磁信标的水下SLAM方法

doi: 10.11993/j.issn.2096-3920.2019.03.007
基金项目: 国家自然科学基金项目资助(61571323;41806116)
详细信息
    作者简介:

    常 帅(1988-), 男, 博士, 讲师, 主要研究方向为水下导航、地球物理场辅助导航技术.

  • 中图分类号: TJ630.33; U674.941; P318.1

An Underwater SLAM Approach Using Magnetic Beacons

  • 摘要: 水下同步定位与构图(SLAM)由于可在未知环境下实现长时间高精度导航估计, 已成为近年来UUV 自主导航的重要发展趋势之一。无人水下航行器(UUV)在运动过程中, 以航行区域的背景地磁图为辅助提取磁信标磁场矢量和梯度特征。为增强SLAM技术在自然特征欠缺环境中的有效性, 同时避免水下磁信标磁矩未知性对反演的影响, 文中采用人工磁信标作为路标, 为SLAM导航系统的状态更新提供观测信息。并采用张量欧拉反褶积(TED)和磁场梯度张量特征分析(EGT)相联合的反演方法对磁信标进行单点反演定位, 在此基础上提出连续反演结果收敛性判定准则, 准确提取磁信标与UUV之间的相对位置信息, 进而构建SLAM系统的线性观测量。最后通过设计的3种磁信标分布场景对基于磁信标反演定位的SLAM系统性能开展了试验验证, 基于试验结果分析了磁信标分布状态对系统性能的影响, 表明了磁信标辅助方式在水下SLAM研究中的有效性。文中的研究可为UUV 长航时水下安全隐蔽作业提供参考。

     

  • [1] Ribas D, Ridao P, Tardos J D, et al. Underwater SLAM in a Marina Environment[C]//The 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 1455-1460.
    [2] Aulinas J, Llado X, Salvi J, et al. Selective Submap Joining for Underwater Large Scale 6-DOF SLAM[C]//The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, Taiwan: IEEE, 2010: 2552-2557.
    [3] He B, Liang Y, Feng X, et al. AUV SLAM and Experiments Using a Mechanical Scanning Forward-Looking Sonar[J]. Sensors, 2012, 12(7): 9386-9410.
    [4] He B, Lv C, Yang L, et al. Exploration with Loop-closing in Depth-fixed Navigation for Autonomous Underwater Vehicle[C]//Intelligent Vehicles Symposium. Xi’an, China: IEEE, 2009: 459-463.
    [5] Paull L, Huang G, Seto M, et al. Communication-const- rained Multi-AUV Cooperative SLAM[C]//IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015: 509-516.
    [6] Liam P, Mae S, John L. Decentralized Cooperative Trajectory Estimation for Autonomous Underwater Vehicles[C]// The 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Chicago, IL, USA: IEEE, 2014.
    [7] Wynn W M, Frahm C P, Clark R H. Advanced Superconducting Gradiometer Magnetometer Arrays and a Novel Signal Processing Technique[J]. IEEE Transaction on Magnetics, 1975, 11(2): 701-707.
    [8] Birsan M. Recursive Bayesian Method for Magnetic Dipole Tracking With a Tensor Gradiometer[J]. IEEE Transactions on Magnetics, 2011, 47(2): 409-415.
    [9] Beiki M, Pedersen L B, Nazi H. Interpretation of Aeromagnetic Data Using Eigenvector Analysis of Pseudo Gravity Gradient Tensor[J]. Geophysics, 2011, 76(76): 1-10.
    [10] Clark D A. New Methods for Interpretation of Magnetic Vector and Gradient Tensor Data I: Eigenvector Analysis and the Normalised Source Strength[J]. Exploration Geo- physics, 2012, 43(4): 267-282.
    [11] 迟铖, 任建存, 吕俊伟, 等. 基于磁梯度张量的目标多测量点线性定位方法[J]. 探测与控制学报, 2017, 39(5): 62-67.

    Chi Cheng, Ren Jian-cun, Lü Jun-wei, et al. Linear Localization Method Based on Magnetic Gradient Tensor of Multi-points[J]. Journal of Detection & Control, 2017, 39(5): 62-67.
    [12] 万成彪, 潘孟春, 张琦, 等. 基于张量特征值和特征向量的磁性目标定位[J]. 吉林大学学报(工学版), 2017, 47(2): 655-660.

    Wan Cheng-biao, Pan Meng-chun, Zhang Qi, et al. Magnetic Object Localization with Eigenvalue and Eigenvector of Tensor[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 655-660.
    [13] Zhang C , Mushayandebvu M F , Reid A B , et al. Euler Deconvolution of Gravity Tensor Gradient Data[J]. Geophysics, 2000, 65(2): 512-520.
    [14] 张朝阳, 肖昌汉, 阎辉. 磁性目标的单点磁梯度张量定位方法[J]. 探测与控制学报, 2009, 31(4): 44-48.

    Zhang Zhao-yang, Xiao Chang-han, Yan Hui. Localization of a Magnetic Object Based on Magnetic Gradient Tensor at a Single Point[J]. Journal of Detection & Control, 2009, 31(4): 44-48.
    [15] Teixeira F C, Pascoal A M. Magnetic Navigation and Tra- cking of Underwater Vehicles[J]. IFAC Proceedings Volumes, 2013, 46(33): 239-244.
    [16] Pei Y H, Yeo H G. Magnetic Gradiometer Inversion for Underwater Magnetic Object Parameters[C]//Oceans. Singapore: IEEE, 2007: 1-6.
    [17] Pei Y H, Yeo H G, Kang X Y, et al. Magnetic Gradiometer on an AUV for Buried Object Detection[C]//Oceans. Seattle, WA, USA: IEEE, 2010: 1-8.
    [18] Vallivaara I , Haverinen J , Kemppainen A , et al. Magnetic Field-based SLAM Method for Solving the Localization Problem in Mobile Robot Floor-cleaning Task[C]//International Conference on Advanced Robotics. Xplore: IEEE, 2011.
    [19] Gao C, Harle R. MSGD: Scalable Back-end for Indoor Magnetic Field-based GraphSLAM[C]//IEEE International Conference on Robotics & Automation. Singapore, Singapore: IEEE, 2017.
    [20] Kok M , Solin A. Scalable Magnetic Field SLAM in 3D Using Gaussian Process Maps[C]//2018 21st International Conference on Information Fusion, Cambridge, UK: IEEE, 2018: 1353-1360.
    [21] Yoshii T. Method for Detecting a Magnetic Source by Measuring the Magnetic Field Thereabout. US: US4309659[P], 1982.
    [22] Wu M, Yao J. Adaptive UKF-SLAM Based on Magnetic Gradient Inversion Method for Underwater Navigation [C]//International Conference on Unmanned Aircraft Systems. Denver, CO, USA: IEEE, 2015.
  • 加载中
计量
  • 文章访问数:  770
  • HTML全文浏览量:  2
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-06-30

目录

    /

    返回文章
    返回
    服务号
    订阅号