• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自主水下航行器导航方法综述

黄玉龙 张勇刚 赵玉新

黄玉龙, 张勇刚, 赵玉新. 自主水下航行器导航方法综述[J]. 水下无人系统学报, 2019, 27(3): 232-253. doi: 10.11993/j.issn.2096-3920.2019.03.002
引用本文: 黄玉龙, 张勇刚, 赵玉新. 自主水下航行器导航方法综述[J]. 水下无人系统学报, 2019, 27(3): 232-253. doi: 10.11993/j.issn.2096-3920.2019.03.002
HUANG Yu-long, ZHANG Yong-gang, ZHAO Yu-xin. Review of Autonomous Undersea Vehicle Navigation Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 232-253. doi: 10.11993/j.issn.2096-3920.2019.03.002
Citation: HUANG Yu-long, ZHANG Yong-gang, ZHAO Yu-xin. Review of Autonomous Undersea Vehicle Navigation Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 232-253. doi: 10.11993/j.issn.2096-3920.2019.03.002

自主水下航行器导航方法综述

doi: 10.11993/j.issn.2096-3920.2019.03.002
基金项目: 国家自然科学基金项目资助(61773133, 41676088)
详细信息
    作者简介:

    黄玉龙(1990-), 男, 博士, 副教授, 主要研究方向为惯性导航、组合导航、信息融合及统计机器学习.

  • 中图分类号: TJ630.33; U674.941; TB568

Review of Autonomous Undersea Vehicle Navigation Methods

  • 摘要: 自主水下航行器(AUV)水下导航技术的准确性是在水下开展搜索、探测及反潜等任务的有力保障。现有AUV的导航方法大多以捷联惯性导航系统(SINS)为主, 以水声测速与定位技术、地球物理导航技术及协同导航技术为辅。基于此, 文中回顾了国内外近年来AUV水下导航技术最新的研究进展; 简述了AUV各种水下导航技术的基本原理, 并指出了各种方法的适用条件及优缺点; 分析了AUV水下导航方法存在的技术难点, 并给出了相对应的解决思路。同时对未来的AUV水下导航技术的发展趋势进行了展望。

     

  • [1] 程娜. 可持续发展视阈下中国海洋经济发展研究[D]. 长春: 吉林大学, 2013.
    [2] 徐博, 白金磊, 郝燕玲, 等. 多AUV协同导航问题的研究现状与进展[J]. 自动化学报, 2015, 41(3): 445-461.

    Xu Bo, Bai Jin-lei, Hao Yan-ling, et al. The Research Status and Progress of Cooperative Navigation for Multiple AUVs [J]. Acta Automatica Sinica, 2015, 41(3): 445-461.
    [3] 高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012.
    [4] 罗维. 多普勒计程仪的信号处理算法研究与系统软件设计[D]. 杭州: 杭州电子科技大学, 2014.
    [5] 严浙平, 王璐. UUV水下定位方法的研究现状与进展[J].哈尔滨工程大学学报, 2017, 38(7): 989-1000.

    Yan Zhe-ping, Wang Lu. Research Status and Progress of UUV Underwater Localization[J]. Journal of Harbin Engineering University, 2017, 38(7): 989-1000.
    [6] Fallon M F, Papadopoulos G, Leonard J J. Cooperative AUV Navigation Using a Single Maneuvering Surface Craft[J]. The International Journal of Robotics Research, 2010, 29(12): 1461-1474.
    [7] Tal A, Klein I, Katz R. Inertial Navigation System/Doppler Velocity Log(INS/DVL) Fusion with Partial DVL Measurements[J]. Sensors, 2017, 17(2): 415-434.
    [8] 陈建华, 朱海, 王超, 等. 水下SINS/DVL紧组合导航算法[J]. 海军工程大学学报, 2017, 29(2): 108-112.

    Cheng Jian-hua, Zhu Hai, Wang Chao, et al. Underwater SINS/DVL Tightly Integrated Navigation Algorithm[J]. Journal of Naval University of Engineering, 2017, 29(2): 108-112.
    [9] Eliav R, Klein I. INS/Partial DVL Measurements Fusion with Correlated Process and Measurement Noise[C]//The 5th International Electronic Conference on Sensors and Applications. Basel, Switzerland: MDPI, 2019, 4(1): 34.
    [10] Liu P J, Wang B, Deng Z H, et al. INS/DVL/PS Tightly Coupled Underwater Navigation Method With Limited DVL Measurements[J]. IEEE Sensors Journal, 2018, 18(7): 2994-3002.
    [11] Yao Y Q, Xu X S, Li Y, et al. A Hybrid IMM Based INS/DVL Integration Solution for Underwater Vehicles[J]. IEEE Transactions on Vehicular Technology(Early Access), 2019.
    [12] Miller P A. Farrell J A, Zhao Y Y, et al. Autonomous Underwater Vehicle Navigation[J]. IEEE Journal of Oceanic Engineering, 2010, 35: 663-678.
    [13] Sam W. Remotely Operated Vehicles of the World[M]. 4th ed. USA: Oilfield Publications Limited, 2000.
    [14] Jalving B, Gade K, Svartveit K, et al. DVL Velocity Aiding in the HUGIN1000 Integrated Inertial Navigation System[J]. Modelling, Identification and Control, 2004, 25(4): 223-235.
    [15] 赵俊波, 葛锡云, 冯雪磊, 等. 水下SINS/DVL组合导航技术综述[J]. 水下无人系统学报, 2018, 26(1): 2-9.

    Zhao Jun-bo, Ge Xi-yu, Feng Xue-lei, et al. A Review of Underwater SINS/DVL Integrated Navigation Technology[J]. Journal of Unmanned Undersea Systems, 2018, 26 (1): 2-9.
    [16] Larsen M B. High Performance Doppler-inertial Navigation experimental Results[C]//Ocean 2000 MTS/IEEE Conference and Exhibition. RI, USA: IEEE, 2000.
    [17] 徐晓苏, 潘永飞, 邹海军. 基于自适应滤波的SINS/ DVL组合导航系统[J]. 华中科技大学学报(自然科学版), 2015, 43(3): 95-99.

    Xu Xiao-su, Pan Yong-fei, Zou Hai-jun. SINS/DVL IntegratedNavigation System Based on Adaptive Filtering[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2015, 43(3): 95-99.
    [18] 徐晓苏, 董亚, 童金武, 等. 基于5阶球面最简相径的改进型容积卡尔曼滤波在SINS/DVL组合导航中的应用[J]. 中国惯性技术学报, 2017, 25(3): 343-348.

    Xu Xiao-su, Dong Ya, Tong Jin-wu, et al. Improved Fifth-degree Spherical Simplex Sadial Cubature Kalman Filter in SINS/ DVL Integrated Navigation[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 343-348.
    [19] Xu X, Li P, Liu J. A Fault-Tolerant Filtering Algorithm for SINS/DVL/MCP Integrated Navigation System[J]. Mathematical Problems in Engineering, 2015(4): 1-12.
    [20] Huang Y L, Zhang Y G, Li N, et al. A Novel Robust Student’s t-Based Kalman Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1545-1554.
    [21] Hu Y, Jin Z, Qi S, et al. Estimation Fusion for Networked Systems with Multiple Asynchronous Sensors and Stochastic Packet Dropouts[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2017, 354(1): 145-459.
    [22] Lin H L, Sun S L. Distributed Fusion Estimator for Multi-sensor Asynchronous Sampling Systems with Missing Measurements[J]. IET Signal Processing, 2016, 10(7): 724-731.
    [23] 朱倚娴, 程向红, 周玲, 等. 组合导航系统中异步多传感器信息融合算法[J]. 东南大学学报, 2018, 48(2): 195- 200.

    Zhu Yi-xian, Cheng Xiang-hong, Zhou Ling, et al. Information Fusion Algorithm for Asynchronous Multi-sensors in Integrated Navigation Systems[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(2): 195-200.
    [24] Li W L, Zhang L D, Sun F P, et al. Alignment Calibration of IMU and Doppler Sensors for Precision INS/DVL Integrated Navigation[J]. Optik, 2015, 126(23): 3872-3876.
    [25] Gong J, Liang J, Wang Y, et al. On-line Calibration Method of SINS/DVL Integrated Navigation System[C]//2018 25th Saint Petersburg International Conference on Integrated Navigation Systems(ICINS). Saint Petersburg, Russian Federation: IEEE, 2018: 1-4.
    [26] Liu J, Wang B, Deng Z. An Online Calibration Method of INS and Doppler Sensors[C]//2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad, Pakistan: IEEE, 2019: 824-829.
    [27] Pan X, Wu Y. Underwater Doppler Navigation with Self-calibration[J]. The Journal of Navigation, 2016, 69(2): 295-312.
    [28] Troni G, Whitcomb L L. Advances in In Situ Alignment Calibration of Doppler and High/Low-end Attitude Sensors for Underwater Vehicle Navigation: Theory and Ex-perimental Evaluation[J]. Journal of Field Robotics, 2015, 32(5): 655-674.
    [29] Hegrenæs O, Berglund E. Doppler Water-track Aided Inertial Navigation for Autonomous Underwater Vehicle[C] //Proceedings of the IEEE Oceans Conference and Exhibition. Bremen, Germany: IEEE, 2009.
    [30] Zhu Y, Cheng X, Hu J, et al. A Novel Hybrid Approach to Deal with DVL Malfunctions for Underwater Integrated Navigation Systems[J]. Journal of Applied Sciences, 2017, 7(8): 759.
    [31] Martinez A, Hernandez L, Sahli H, et a1. Model-aided Navigation with Sea Current Estimation for an Autonomous Underwater Vehicle[J]. International Journal of Advanced Robotic Systems, 2015, 12(7): 103.
    [32] Hegrenæs O, Hallingstad O. Model-Aided INS With Sea Current Estimation for Robust Underwater Navigation[J]. IEEE Journal of Oceanic Engineering 2011, 36(2): 316-337.
    [33] Zhao L Y, Wang X J, Wang L, et al. A Pretreatment Method for the Velocity of DVL Based on the Motion Constraint for the Integrated SINS/DVL[J]. Applied Sciences, 2016, 6(3): 1-15.
    [34] 范继伟, 沈学强, 杨成伟, 等. 小波故障检测在脉冲星组合导航中的应用[J], 兵工自动化, 2016, 35(5): 46-50.

    Fan Ji-wei, Shen Xue-qiang, Yang Cheng-wei, et al. Application Study on Using Wavelet Fault Detection in Integrated Navigtion System Based on XNAV[J]. Ordnance Industry Automation, 2016, 35(5): 46-50.
    [35] Wang R, Xiong Z, Liu J Y, et al. Chi-square and SPRT Combined Fault Detection for Multisensory Navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1352-1365.
    [36] 肖昌荣, 蒋青吉, 李鹏. HiPAP100水下定位系统及应用[J]. 电子世界, 2014(12): 210-211.

    Xiao Cang-rong, Jiang Qing-ji, Li Peng. HiPAP100 Underwater Positioning System and Its Application[J]. Electronics World, 2014(12): 210-211.
    [37] Ixbule. USBL Postioning Systems[DB/OL]. (2019-05-22) [2019-05-22]. http://www.Ix-blue.com/products/.
    [38] 陈维. GAPS超短基线声学水下定位技术及其在海洋调查中的应用[J]. 大众科技, 2014, 16(5): 15-17.

    Chen Wei. GAPS Ultra-short Baseline Underwater Acoustic Positioning Technology and Its Application in Marine Investigation[J]. Popular Science & Technology, 2014, 16 (5): 15-17.
    [39] Neasham J A, Goodfellow G, Sharphouse R. Development of the “SeaTrac” Miniature Acoustic Modem and USBL Positioning Units for Subsea Robotics and Diver Applications[C]//OCEANS2015. Genova: IEEE, 2015: 1-8.
    [40] Chen H H, Wang C C. Accuracy Assessment of GPS/ Acoustic Positioning Using a Seafloor Acoustic Tansponder system[J]. Ocean Engineering, 2011, 38(13): 1472-1479.
    [41] 郑翠娥, 张居成, 李昭. 深水高精度水下综合定位系统研制科技报告[J]. 科技创新导报, 2016, 13(5): 164-164.

    Zheng Cui-e, Zhang Ju-cheng, Li Zhao. Scientific Report of Deep Sea High Precision Underwater LUSBL Positioning System Project[J]. Science and Technology Innovation Herald, 2016, 13(5): 164-164.
    [42] 江苏中海达海洋信息技术有限公司. Itrack-USBL系列超短基线定位系统[EB/OL](2019-05-22)[2019-05-22]. http://www.zhdgps.com/Product/.
    [43] 杨晓涵. 基于最小二乘法的水下多径环境下测距和定位的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [44] 王燕, 梁国龙. 一种适用于长基线水声定位系统的声线修正方法[J]. 哈尔滨工程大学学报, 2002, 23(5): 32-34.

    Wang Yan. Liang Guo-long. Correction of Sound Velocity in Long Baseline Acoustic Positioning System[J]. Journal of Harbin Engineering University, 2002, 23(5): 32-34.
    [45] 李建. 中国声学学会2018年全国声学大会论文集B水声物理: 超短基线定位中的快速声线跟踪算法研究[C]//2018年全国声学大会. 北京: 中国声学学会, 2018.
    [46] Li J, Gu Q, Chen Y, et al. A Combined Ray Tracing Method for Improving the Precision of the USBL Positioning System in Smart Ocean[J]. Sensors, 2018, 18(10): 3586.
    [47] 张同伟, 刘烨瑶, 唐嘉陵, 等. 大深度载人潜水器之超短基线定位系统: 海上试验及载人深潜应用[J/OL]. 应用基础与工程科学学报, 2019: 1-14. [2019-06-11]. http://kns.cnki.net/kcms/detail/11.3242.TB.20190121.2148. 004.html.

    Zhang Tong-wei, Liu Ye-yao, Tang Jia-ling, et al. Ultra- Short Baseline for Manned Deep-Sea Submersibles: Sea Trial and its Application[J/OL]. Journal of Basic Science and Engineering, 2019: 1-14. [2019-06-11]. http://kns. cn- ki.net/kcms/detail/11.3242.TB.20190121.2148.004.html.
    [48] 李昭, 郑翠娥, 孙大军. 超短基线声传感器安装偏差标定测线规划[J]. 系统工程与电子技术, 2016, 38(5): 1010-1016.

    Li Zhao, Zheng Cui-e, Sun Da-jun. Track Design for the Acoustic Sensor Installation Alignment Calibration in Ultra-short Baseline Positioning System[J]. Systems Engineering and Electronics, 2016, 38(5): 1010-1016.
    [49] Tong J W, Xu X S, Zhang T, et al. Study on Installation Error Analysis and Calibration of Acoustic Transceiver Array Based on SINS/USBL Integrated System[J]. IEEE Access, 2018(6): 66923-66939,
    [50] 徐博, 郝芮, 王超, 等. 基于倒置声学基阵的INS/ USBL组合导航算法研究[J]. 海洋技术学报, 2017, 36 (5): 46-54.

    Xu Bo, Hao Rui, Wang Chao, et al. Research on INS/ USBL Integrated Navigation Algorithm Based on the Inverted Acoustic Array[J]. Journal of Ocean Technology, 2017, 36(5): 46-54.
    [51] 张亚文, 莫明岗, 马小艳, 等. 一种基于相对测量信息的SINS/USBL组合导航算法[J]. 导航定位与授时, 2016, 3(2): 7-13.

    Zhang Ya-wen, Mo Ming-gang, Ma Xiao-yan, et al. An Algorithm Used in Underwater SINS/USBL Integrated Navigation[J]. Navigation Positioning and Timing, 2016, 3(2): 7-13.
    [52] Wang B, Liang J, Wang Y G, et al. SINS/USBL Integrated Navigation Fault-tolerant Method with Chi-square Test[C] //2018 25th Saint Petersburg International Conference on Integrated Navigation Systems(ICINS), Margarita Grishina: St. Petersburg, 2018: 1-4.
    [53] Fan S, Liu C, Li B, et al. AUV Docking Based on USBL Navigation and Vision Guidance[J]. Journal of Marine Science and Technology, 2018: 1437-8213.
    [54] 黄健, 严胜刚. 利用数据融合改进超短基线系统定位精度[J]. 测绘通报, 2018(7): 1-4.

    Huang Jian, Yan Sheng-gang. Improvement on the Positioning Accuracy of Ultra-short Baseline System Based on Data Fusion[J]. Bulletin of Surveying and Mapping, 2018(7): 1-4.
    [55] 梁国龙, 张毅锋, 付进. 利用夹角几何关系的超短基线定位方法[J]. 哈尔滨工程大学学报, 2019, 40(8): 1-6.

    Liang Guo-long, Zhang Yi-feng, Fu Jin. Angle-based Underwater Source Localization for USBL[J]. Journal of Harbin Engineering University, 2019, 40(8): 1-6.
    [56] Xu Y L, Liu W Q, Ding X, et al. USBL Positioning System Based Adaptive Kalman Filter in AUV[C]//2018 OCEANS- MTS/IEEE Kobe Techno-Oceans(OTO). Kobe: IEEE, 2018.
    [57] 李志林, 朱庆. 数字高程模型[M]. 武汉: 武汉测绘科技大学出版社, 2000.
    [58] 邹炜, 孙玉臣. 水下地形匹配辅助导航技术研究[J]. 舰船电子工程, 2017, 37(8): 5-10.

    Zou Wei, Sun Yu-chen. Research on Underwater Terrain Matching Aided Navigation Technology[J]. Ship Electronic Engineering, 2017, 37(8): 5-10.
    [59] 张静远, 谌剑, 李恒, 等. 水下地形辅助导航技术的研究与应用进展[J]. 国防科技大学学报, 2015, 37(3): 128- 135.

    Zhang Jing-yuan, Chen Jian, Li Heng, et al. Research and Application Progress of Underwater Terrain Aided Navigation Technology[J]. Journal of National Defense University of Science and Technology, 2015, 37(3): 128-135.
    [60] Bar-Itzhack I Y, Harman R R. In-space Calibration of a Gyro Quadruplet[R]. AIAA-2009-4152, 2009.
    [61] 郑彤, 边少锋, 王志刚. 基于ICCP匹配算法的海底地形匹配辅助导航[J]. 海洋测绘, 2008, 28(2): 21-23, 28.

    Zheng Tong, Bian Shao-feng, Wang Zhi-gang. Seabed Terrain Matching Aided Navigation Based on ICCP Matching Algorithm[J]. Marine Surveying and Mapping, 2008, 28(2): 21-23, 28.
    [62] 王汝鹏, 李晔, 马腾, 等. AUV地形匹配导航快速收敛滤波[J]. 华中科技大学学报(自然科学版), 2018, 46(7): 94-97.

    Wang Ru-peng, Li Ye, Ma Teng, et al. Fast Convergence Filtering for AUV Terrain Matching Navigation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(7): 94-97.
    [63] 张立华, 刘现鹏, 贾帅东, 等. 一种线面组合的水下地形匹配算法[J]. 测绘学报, 2018, 47(10): 1406-1414.

    Zhang Li-hua, Liu Xian-peng, Jia Shuai-dong, et al. An Underwater Terrain Matching Algorithm Based on Line-surface Combination[J]. Journal of Surveying and Map- ing, 2018, 47(10): 1406-1414.
    [64] 刘现鹏, 张立华, 贾帅东, 等. 基于TIN模型的水下地形匹配定位算法[J]. 海洋测绘, 2018, 38(2): 66-70.

    Liu Xian-peng, Zhang Li-hua, Jia Shuai-dong, et al. Un-derwater Terrain Matching Location Algorithm Based on TIN Model[J]. Marine Surveying and Mapping, 2018, 38 (2): 66-70.
    [65] 徐遵义, 晏磊, 宁书年, 等. 基于Hausdorff距离的海底地形匹配算法仿真研究[J]. 算机工程, 2007, 33(9): 7-9, 21.

    Xu Zun-yi, Yan Lei, Ning Shu-nian, et al. Simulation of Seabed Terrain Matching Algorithms Based on Hausdorff Distance[J]. Computer Engineering, 2007, 33(9): 7-9, 21.
    [66] 谌剑, 张静远, 严平. 一种基于粒子滤波的水下地形匹配算法研究[J]. 海军工程大学学报, 2008, 20(6): 107-112.

    Chen Jian, Zhang Jing-yuan, Yan Ping. Research on Underwater Terrain Matching Algorithm Based on Particle Filter[J]. Journal of Naval Engineering University, 2008, 20(6): 107-112.
    [67] 张晓峻. 水下机器人地磁辅助导航算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
    [68] Chang L. Progress, Contribution and Challenges of Earth- Magnetism Navigation[J]. Automation, Control and Intelligent Systems, 2017, 5(1): 8.
    [69] Wang L, Yu L, Qiao N, et al. Analysis and Simulation of Geomagnetic Map Suitability Based on Vague Set[J]. The Journal of Navigation, 2016, 69(5): 1114-1124.
    [70] Han D, Zhao C, Dai T. Geomagnetic Matching Algorithm Based on Closest Contour Point and Relative Position ConStraint[C]//2017 36th Chinese Control Conference (CCC). Dalian, China: IEEE, 2017: 5932-5936.
    [71] Bavdekar V A, Deshpande A P, Patwardhan S C. Identification of Process and Measurement Noise Covariance for State and Parameter Estimation Using Extended Kalman Filter[J]. Journal of Process control, 2011, 21(4): 585-601.
    [72] 刘睿, 董汉成, 王常虹. 基于模糊自适应强跟踪滤波的惯性/地磁组合导航方法[J]. 中国惯性技术学报, 2011, 19(3): 329-334.

    Liu Rui, Dong Han-cheng, Wang Chang-hong. Inertial/ Geomagnetic Navigation System Based on Fuzzy Adaptive Strong Tracking Kalman Filter[J]. Journal of Chinese Inertial Technology, 2011, 19(3): 329-334.
    [73] 刘岳峰, 郑培晨. 一种基于贝叶斯估计的地磁辅助惯性导航算法[J]. 北京大学学报(自然科学版), 2017, 53(5): 873- 880.

    Liu Yue-feng, Zheng Pei-chen. A Bayesian Estimation- Based Algorithm for GeomagneticAided Inertial Navigation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 873-880.
    [74] Ånonsen K B, Hagen O K. An Analysis of Real-time Terrain Aided Navigation Results from a HUGIN AUV[C]// Oceans 2010 MTS/IEEE Seattle. Washington, USA: IEEE, 2010: 1-9.
    [75] 朱占龙. 惯性/地磁匹配组合导航相关技术研究[D]. 南京: 东南大学, 2015.
    [76] Tao W, Chunhui T, Jinhui Z, et al. Correction of Tri-axial Magnetometer Interference Caused by an Autonomous Underwater Vehicle Near-bottom Platform[J]. Ocean Engineering, 2018, 160: 68-77.
    [77] Thébault E, Finlay C C, Alken P, et al. Evaluation of Candidate Geomagnetic Field Models for IGRF-12[J]. Earth, Planets and Space, 2015, 67(1): 112.
    [78] Maus S, Macmillan S, McLean S, et al. The US/UK World Magnetic Model for 2010-2015[EB/OL].(2015-04-29) [2019-04-05]. http://nora.nerc.ac.uk/id/eprint/510709.
    [79] Chen Z, Zhang Q, Pan M, et al. A New Geomagnetic Matching Navigation Method Based on Multidimensional Vector Elements of Earth’s Magnetic Field[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1289-1293.
    [80] Wang H B, Xu X S, Zhang T. Multipath Parallel ICCP Underwater Terrain Matching Algorithm Based on Multi-beam Bathymetric Data[J]. IEEE Access, 2018, 6: 48708- 48715.
    [81] Xiao J, Duan X, Qi X. An Adaptive M-ICCP Geomagnetic Matching Algorithm[J]. The Journal of Navigation, 2018, 71(3): 649-663.
    [82] Li H, Liu M, Zhang F. Geomagnetic Navigation for an AUV Based on Multi-objective Simulating Annealing Algorithm[C]//2017 IEEE International Conference on Robotics and Biomimetics(ROBIO). Macau, China: IEEE, 2017: 2027-2031.
    [83] Li H, Liu M Y, Zhang F H. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multiobjective Evolutionary Algorithm[EB/OL]. (2017-07-12) [2019-05-05]. https://www.research-gate.net/publication/.3184-64017_Geomagnetic_Navigation_of_Autonomous_Underwater_Vehicle_Based_on_Multi-objective_Evolutionary_ Algorithm.
    [84] Dai T, Miao L, Shao H. A Robust Underwater Navigation Method Fusing Data of Gravity Anomaly and Magnetic Anomaly[J]. International Journal of Systems Science, 2019: 1-15.
    [85] 王鹏. 水下地磁导航适配性研究[D]. 长沙: 国防科学技术大学, 2014.
    [86] Ma Y, Zhao Y, Wu L, et al. Navigability Analysis of Magnetic Map with Projecting Pursuit-based Selection Method by Using Firefly Algorithm[J]. Neurocomputing, 2015, 159: 288-297.
    [87] Xiao J, Duan X, Qi X, et al. Research on Suitable Matching Area in Geomagnetic Navigation[C]//2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics(AMEII 2016). Research Institute of Management Science and Industrial Engineering, Hangzhou, China: Atlantis Press, 2016.
    [88] Wang Y , Wu L , Chai H , et al. Technology of Gravity Aided Inertial Navigation System and Its Trial in South China Sea[J]. IET Radar, Sonar & Navigation, 2016, 10(5): 862-869.
    [89] 王虎彪, 王勇, 陆洋, 等. 用卫星测高和船测重力资料联合反演海洋重力异常[J]. 大地测量与地球动力学, 2005, 25(1): 81-86.

    Wang Hu-biao, Wang Yong, Lu Yang, et al. Inversion of Marine Gravity Anomalies by Combinating Multi Altimeter Data and Shipborne Gravimetric Data[J]. Geodesy and Geodynamics, 2005, 25(1): 81-86.
    [90] 付梦印, 刘飞, 袁书明, 等. 水下惯性/重力匹配自主导航综述[J]. 水下无人系统学报, 2017, 25(2): 35-47.

    Fu Meng-yin, Liu Fei, Yuan Shu-ming, et al. Review of Undersea Autonomous Inertial-Gravity Matching Navigation[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 35-47.
    [91] 刘少明, 孙少安, 卢红艳, 等. LCR重力仪与CG-5重力仪的长基线混合标定[J]. 大地测量与地球动力学, 2012, 32(1): 56-59.

    Liu Shao-ming, Sun Shao-an, Lu Hong-yan, et al. Mixed Calibration on Long Baselinefor LCR and CG-5 Gravimeters[J]. Geodesy and Geodynamics, 2012, 32(1): 56-59.
    [92] 李海兵, 蔡体菁. 全张量重力梯度仪测量方程及误差分析[J]. 东南大学学报(自然科学版), 2010, 40(3): 517-521.

    Li Hai-bing, Cai Ti-jing. Measurement Equations and Er-ror Analysis of Full Tensor Gravity Gradiometer[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(3): 517-521.
    [93] 张子山. GDP-1型重力仪船载试验介绍[C]//重力测量技术——2014年惯性技术发展动态发展方向研讨会. 重庆: 中国惯性技术学会, 2014.
    [94] 涂海波, 何建刚, 刘雷钧, 等. CHZ-Ⅱ海洋重力仪重力敏感结构的性能测试与分析[J]. 大地测量与地球动力学, 2015, 35(4): 711-714.

    Tu Hai-bo, He Jian-gang, Liu Lei-jun, et al. Performance Characteristics for the g-Sentitive Elastic Structure of CHZ-Ⅱ Sea Gravimeter[J]. Geodesy and Geodynamics, 2015, 35(4): 711-714.
    [95] Zhao L, Gao N, Huang B, et al. A Novel Terrain-aided Navigation Algorithm Combined with the TERCOM Algorithm and Particle Filter[J]. IEEE Sensors Journal, 2015, 15(2): 1124-1131.
    [96] Lee B, Kim C, Park R. An Orientation Reliability Matrix for the Iterative Closest Point Algorithm[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 22(10): 1205-1208.
    [97] Liu M, Wang B, Deng Z, et al. Improved ICCP Algorithm and Its Application in Gravity Matching Aided Inertial Navigation System[C]//In Proc. 33rd China. Control Conf., Jul. Xuzhou, China: IEEE, 2014: 562-567.
    [98] 白文平, 王志刚. ICCP重力匹配辅助导航算法研究及改进[J]. 计算机仿真, 2013, 30(6): 9-15.

    Bai Wen-ping, Wang Zhi-gang. Researching and Improving of ICCP Algorithm for Gravity Aided Inertial Navigation[J]. Computer Simulation, 2013, 30(6): 9-15.
    [99] Dai Z, Kang C. Geomagnetic Field Aided Inertial Navigation Using the SITAN Algorithm[C]//2014 2nd International Conference on Systems and Informatics(ICSAI). Shanghai, China: IEEE, 2014.
    [100] Han Y, Wang B, Deng Z, et al. An Improved TERCOM Based Algorithm for Gravity Aided Navigation[J]. IEEE Sensors Journal, 2016, 16(8): 2537-2544.
    [101] Yuan G, Zhang H, Yuan K, et al. A Combinational Aided Navigation Algorithm based on Terrain Variance Entropy and ICCP[C]//In Proc. 5th Int. Joint Conf. Comput. Sci. Optim., Cambridge, MA: IEEE, 2012, 835-838.
    [102] Sanguino T D J M, Gomez F P. Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering[J]. IEEE/ASME Transactions on Me- chatronics, 2016, 21(6): 1-1.
    [103] Wang B, Li Y, Deng Z, et. A particle Filter-based Matching Algorithm with Gravity Sample Vector for Underwater Gravity Aided Navigation[J]. IEEE/ASME Trans. Mechatronics, 2016, 21(3): 1399-1408.
    [104] Wu L , Wang H , Chai H , et al. Research on the Relative Positions-Constrained Pattern Matching Method for Underwater Gravity-aided Inertial Navigation[J]. Journal of Navigation, 2015, 68(5): 937-950.
    [105] Han Y R, Wang B, Deng Z H, et al. Point Mass Filter Based Matching Algorithm in Gravity Aided Underwater Navigation[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 152-159.
    [106] Han Y, Wang B, Deng Z, et al. A Combined Matching Algorithm for Underwater Gravity Aided Navigation[J]. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 233-241.
    [107] Wang H, Wang Y, Fang J, et al. Simulation Research on Aminimum Root-mean-square Error Rotation Fitting Algorithm for Gravity Matching Navigation[J]. Sci. China Earth Sci., 2012, 55(1): 90-97.
    [108] Paull L, Saeedi S, Seto M, et al. AUV Navigation and Localization: A Review[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 131-149.
    [109] Kalwa J. Final Results of the European Project GREX: Coordination and Control of Cooperating Marine Robots[J]. IFAC Proceedings Volumes, 2010, 43(16): 181-186.
    [110] Willcox S, Goldberg D, Vaganay J, et al. Multi-vehicle Cooperative Navigation and Autonomy with the Bluefin CADRE System[C]//Proceedings of International Federation of Automatic Control(IFAC) Conference. Lisbon, IEEE, 2006: 20-22.
    [111] Abreu P, Bayat M, Botelho J, et al. Cooperative Control and Navigation in the Scope of the EC CADDY Project [C]//Oceans 2015. Genova: IEEE, 2015: 1-5.
    [112] 张少伟, 俞建成, 张艾群, 等. 多水下机器人自主海洋特征场跟踪研究[J]. 科学通报, 2013, 58(z2): 67-74.

    Zhang Shao-wei, Yu Jian-cheng, Zhang Ai-qun, et al. Tracking Strategy Analysis with Multi Underwater Vehicles for Ocean Feature[J]. Chinese Science Bulletin, 2013, 58(z2): 67-74.
    [113] 牟春晖, 边信黔, 王宏健, 等. 具有通信约束的多 UUV 协调路径跟踪控制[J]. 鱼雷技术, 2011, 19(3): 195-200.

    Mou Chun-hui, Bian Xin-qian, Wang Hong-jian, et al. Coordinated Path Tracking Control of Multi-UUV with Communication Constraint[J]. Torpedo Technology, 2011, 19(3): 195-200.
    [114] Sun C, Zhang Y, Wang G, et al. A Maximum Correntropy Divided Difference Filter for Cooperative Localization[J]. IEEE Access, 2018, 6: 41720-41727.
    [115] Xing W, Zhao Y, Karimi H R. Convergence Analysis on Multi-AUV Systems with Leader-follower Architecture[J]. IEEE Access, 2017, 5: 853-868.
    [116] Huang Y, Zhang Y, Xu B, et al. A New Outlier-robust Student’s t Based Gaussian Approximate Filter for Cooperative Localization[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2380-2386.
    [117] 刘明雍, 张加全, 张立川. 洋流影响下基于运动矢径的AUV协同定位方法[J]. 控制与决策, 2011, 26(11): 1632-1636.

    Liu Ming-yong, Zhang Jia-quan, Zhang Li-chuan. AUV Cooperative Localization Method Based on Motion Radius Vector in the Presence of Unknown Currents[J]. Control and Decision, 2011, 26(11): 1632-1636.
    [118] 刘明雍. 水下航行器协同导航技术[M]. 北京: 国防工业出版社, 2014.
    [119] Arrichiello F, Antonelli G, Aguiar A P, et al. Observability Metric for the Relative Localization of AUVs Based on Range and Depth Measurements: Theory and Experiments[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, California, USA: IEEE, 2011: 3166-3171.
    [120] 房新鹏, 严卫生. 双领航多自主水下航行器移动长基线定位最优队形研究[J]. 兵工学报, 2012, 33(8): 1020-1024.

    Fang Xin-peng, Yan Wei-sheng. Formation Optimization for Cooperative Localization Based on Moving Long Baseline with Two Leader AUVs[J]. Acta Armamentarii, 2012, 33(8): 1020-1024.
    [121] Tan Y T, Gao R, Chitre M. Cooperative Path Planning for Range-only Localization Using a Single Moving Beacon[J]. IEEE Journal of Oceanic Engineering, 2014, 39(2): 371-385.
    [122] Howard A, Matark M J, Sukhatme G S. Localization for Mobile Robot Teams Using Maximum Likelihood Estimation[C]//2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002: 434-439.
    [123] Trawny N, Roumeliotis S I, Giannakis G B. Cooperative Multi-robot Localization Under Communication Constraints[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 4394- 4400.
    [124] Nerurkar E D, Roumeliotis S I, Martinelli A. Distributed Maximum a Posteriori Estimation for Multi-robot Cooperative Localization[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 1402-1409.
    [125] Taylor C J, Spletzer J. A Bounded UncertaintyApproach to Cooperative Localization Using Relative Bearing Constraints[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 2500-2506.
    [126] Eustice R M, Whitcomb L L, Singh H, et al. Experimen- tal Results in Synchronous-clock One-way-travel-time Acoustic Navigation for Autonomous Underwater Vehicles[C]//2007 IEEE International Conference on Robotics and Automation. Roma, Italy: IEEE, 2007: 4257- 4264.
    [127] Huang Y, Zhang Y, Xu B, et al. A New Adaptive Extended Kalman Filter for Cooperative Localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 353-368.
    [128] 穆华. 多运动平台协同导航的分散式算法研究[D]. 长沙: 国防科学技术大学, 2010.
    [129] Mu H, Bailey T, Thompson P, et al. Decentralised Solutions to the Cooperative Multi-platform Navigation Problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1433-1449.
    [130] Webster S E, Walls J M, Whitcomb L L, et al. Decentra- lized Extended Information Filter for Single-beacon Cooperative Acoustic Navigation: Theory and Experi-ments[J]. IEEE Transactions on Robotics, 2013, 29(4): 957-974.
    [131] 刘明雍, 沈俊元, 张加全, 等. 一种基于无迹卡尔曼滤波的 UUV 协同定位方法[J]. 鱼雷技术, 2011, 19(3): 205-208.

    Liu Ming-yong, Shen Jun-yuan, Zhang Jia-quan, et al. A Cooperative Localization Method of UUV Based on Unscented Kalman Filter[J]. Torpedo Technology, 2011, 19(3): 205-208.
    [132] Peasgood M. Cooperative Navigation for Teams of Mobile Robots[D]. Waterloo, Canada: The University of Waterloo, 2007.
    [133] Maczka D K, Gadre A S, Stilwell D J. Implementation of a Cooperative Navigation Algorithm on a Platoon of Autonomous Underwater Vehicles[C]//2007 Oceans. Aberdeen, Scotland: IEEE, 2007: 1-6.
    [134] Fallon M F, Papadopoulos G, Leonard J J. A Measurement Distribution Framework for Cooperative Navigation Using Multiple AUVs[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA: IEEE, 2010: 4256-4263.
    [135] Qi Y, Wang B, Wang S, et al. Cooperative Navigation for Multiple Autonomous Underwater Vehicles with Time Delayed Measurements[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference(CGNCC). Nanjing, China: IEEE, 2016: 295-299.
    [136] Xiao G, Wang B, Deng Z, et al. An Acoustic Communication Time Delays Compensation Approach for Master-slave AUV Cooperative Navigation[J]. IEEE Sensors Journal, 2017, 17(2): 504-513.
    [137] Vaganay J, Baccou P, Jouvencel B. Homing by Acoustic Ranging to a Single Beacon[C]//Oceans 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings(Cat. No.00CH37158). Providence, RI, USA: IEEE, 2000: 1457-1462.
    [138] Hollinger G A, Pereira A, Ortenzi V, et al. Towards Improved Prediction of Ocean Processes Using Statistical Machine Learning[J]. Inorganic Materials, 2013, 34(2): 109-113.
    [139] Shchepetkin A F, McWilliams J C. The Regional Oceanic Modeling System(ROMS): a Split-explicit, Freesurface, Topography-following-coordinate Oceanic Model[J]. Ocean Modelling, 2005, 9(4): 347-404.
    [140] Li Q, Naqvi S M, Neasham J, et al. Robust Cooperative Navigation for AUVs Using the Student’s T Distribution [C]//2017 Sensor Signal Processing for Defence Conference(SSPD). Edinburgh, UK: IEEE, 2017: 1-5.
    [141] Harris Z J, Whitcomb L L. Preliminary Study of Cooperative Navigation of Underwater Vehicles Without a DVL Utilizing Range and Range-rate Observations[C]//2016 IEEE International Conference on Robotics and Automation(ICRA). Stockholm, Sweden: IEEE, 2016: 2618-2624.
    [142] Harris Z J, Whitcomb L L. Preliminary Evaluation of Cooperative Navigation of Underwater Vehicles without a DVL Utilizing a Dynamic Process Model[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE, 2018: 1-9.
    [143] Harris Z J, Whitcomb L L. Preliminary Feasibility Study of Cooperative Navigation of Underwater Vehicles with Range and Range-rate Observations[C]//Oceans 2015-MTS/IEEE. Washington: IEEE, 2015: 1-6.
    [144] Harris Z J, Whitcomb L L. Preliminary Simulation Study of Combined Control and Cooperative Navigation for Underwater Vehicles[C]//Oceans 2018 MTS/IEEE. Charleston: IEEE, 2018: 1-5.
    [145] Yan Z, Wang L, Wang T, et al. Polar Cooperative Naviga-tion Algorithm for Multi-unmanned Underwater Vehicles Considering Communication Delays[J]. Sensors, 2018, 18(4): 1044.
  • 加载中
计量
  • 文章访问数:  1613
  • HTML全文浏览量:  34
  • PDF下载量:  1668
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-05
  • 修回日期:  2019-05-10
  • 刊出日期:  2019-06-30

目录

    /

    返回文章
    返回
    服务号
    订阅号