• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多UUV协调控制技术研究现状及发展趋势

严浙平 刘祥玲

严浙平, 刘祥玲. 多UUV协调控制技术研究现状及发展趋势[J]. 水下无人系统学报, 2019, 27(3): 226-231. doi: 10.11993/j.issn.2096-3920.2019.03.001
引用本文: 严浙平, 刘祥玲. 多UUV协调控制技术研究现状及发展趋势[J]. 水下无人系统学报, 2019, 27(3): 226-231. doi: 10.11993/j.issn.2096-3920.2019.03.001
YAN Zhe-ping, LIU Xiang-ling. Research Status and Development Trend of Multi-UUV Coordinated Control Technology: A Review[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 226-231. doi: 10.11993/j.issn.2096-3920.2019.03.001
Citation: YAN Zhe-ping, LIU Xiang-ling. Research Status and Development Trend of Multi-UUV Coordinated Control Technology: A Review[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 226-231. doi: 10.11993/j.issn.2096-3920.2019.03.001

多UUV协调控制技术研究现状及发展趋势

doi: 10.11993/j.issn.2096-3920.2019.03.001
基金项目: 国家自然科学基金项目资助(51105088、51179038、51609048)
详细信息
    作者简介:

    严浙平(1972-), 男, 博士, 教授, 主要研究方向为水下无人航行器导航与控制技术.

  • 中图分类号: TJ630.33; U674.941; TP273

Research Status and Development Trend of Multi-UUV Coordinated Control Technology: A Review

  • 摘要: 为了使无人水下航行器(UUV)更好地完成复杂海洋任务, 需要通过多UUV系统协调控制来实现大规模协同侦察、作战、搜索及营救等任务。文中对编队控制、任务分配、协调路径规划和围捕等多UUV协调控制研究中的关键技术研究现状及进展进行综述, 重点分析了编队控制中的队形保持、队形重构、协同避障以及编队控制衍生出的集群控制等问题。最后指出, 应加强对强耦合非线性模型的协调控制、弱通信约束条件下的协调控制以及异构多UUV系统的协调控制等研究工作, 以实现复杂海洋环境下多UUV的有效协调控制。

     

  • [1] 严浙平, 周佳加. 水下无人航行器控制技术[M]. 北京: 国防工业出版社, 2015.
    [2] Yoon S, Qiao C M. Cooperative Search and Survey Using Autonomous Underwater Vehicles(AUVs)[J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(3): 364-379.
    [3] Sotzing C C. The Design and Implementation of A Multi-Agent Architecture to Increase Coordination Efficiency in Multi-AUV Operations[D]. Edinburgh, Scotland: Heriot-Watt University, 2009.
    [4] 吴迪. 分布式多水下无人航行器搜捕任务协调方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [5] 刘一博. 水下潜航器编队海洋勘测的协调控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
    [6] Curtin T, Bellingham J, Catipovic J, et al. Autonomous Ocean Sampling Networks[J]. Oceanography, 1993, 6(3): 86-94.
    [7] Cui R X, Ge S S, How B V E, et al. Leader-follower Formation Control of Underactuated Autonomous Un-derwater Vehicles[J]. Ocean Engineering, 2010, 37: 1491- 1502.
    [8] Hu Z, Ma C, Zhang L, et al. Formation Control of Impulsive Networked Autonomous Underwater Vehicles Under Fixed and Switching Topologies[J]. Neurocomputing, 2015, 147: 291-298.
    [9] Ni J, Yang S X. Bioinspired Neural Network for Real-time Cooperative Hunting by Multi-robots in Unknown Environments[J]. IEEE Transactions on Neural Networks, 2011, 22: 2062-2077.
    [10] Lewis M A, Tan K H. High Recision Formation Control of Mobile Robots Using Virtual Structures[J]. Autonomous Robots, 1997(4): 387-403.
    [11] Li S H, Wang X Y. Finite-time Consensus and Collision Avoidance Control Algorithms for Multiple AUVs[J]. Automatica, 2013, 49: 3359-3367.
    [12] Chen S, Ho D W C. Consensus Control for Multiple AUVs Under Imperfect Information Caused by Communication Faults[J]. Information Sciences, 2016, 370: 565- 577.
    [13] Saber R O, Murray R M. Consensus Problems in Networks of Agents with Switching Topology and Time delays[J]. IEEE Transactions on Automatic Control, 2004, 49: 1520-1533.
    [14] Ren W, Beard R W, Atkins E M. Information Consensus in Multivehicle Cooperative Control[J]. IEEE Control Systems, 2007, 27: 71-82.
    [15] 王银涛, 严卫生. 多自主水下航行器系统一致性编队跟踪控制[J]. 控制理论与应用, 2013, 30(3): 379-384.

    Wang Yin-tao, Yan Wei-sheng. Consensus Formation Tracking Control of Multiple Autonomous Underwater Vehicle systems[J]. Control Theory & Applications, 2013, 30(3): 379-384.
    [16] Zhao L, Yu J, Yu H. Distributed Adaptive Consensus Tracking Control for Multiple AUVs[C]//International Conference on Information Science & Technology. Da Nang, Vietnam: IEEE, 2017: 480-484.
    [17] 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49(3): 1-14.

    Zong Qun, Wang Dan-dan, Shao Shi-kai, et al. Research Status and Development of Multi UAV Coordinated Formation Flight Control[J]. Journalof Harbin Iinsttute of Technology, 2017, 49(3): 1-14.
    [18] Sahu B K, Gupta M M, Subudhi B. Fuzzy Separation Potential Function Based Flocking Control of Multiple AUVs[C]//In Joint IEEE IFSA World Congr. NAFIPS Anu. Meeting. Edmonton: IEEE, 2013: 1429-1434.
    [19] Sahu B K, Subudhi B, Dash B K. Flocking Control of Multiple Autonomous Underwater Vehicles[C]//IEEE India Conf.. Kochi: IEEE, 2012: 257-262.
    [20] Sahu B K, Subudhi B. Flocking Control of Multiple AUVs Based on Fuzzy Potential Functions[J]. IEEE Transac-tionson Fuzzy Systems, 2018, 26(5): 2539-2551.
    [21] 于大海. 弱通信条件下的多水下机器人任务分配方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [22] 吕洪莉. 面向多目标优化的多AUVs群体协同任务分配[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [23] 朱大奇, 李欣, 颜明重. 多自治水下机器人多任务分配的自组织算法[J]. 控制与决策, 2012, 27(8): 1201-1210.

    Zhu Da-qi, Li Xin, Yan Ming-zhong. Task Assignment Algorithm of Multi-AUV Based on Self-organizing Map[J]. Control and Decision, 2012, 27(8): 1201-1210.
    [24] Stack J R, Smith C M, Hyland J C. Efficient Reacquisition Path Planning for Multiple Autonomous Underwater-Vehicles [C]//Ocean’04-MTS/IEEE Techno-Ocean’ 04: Bridges across the Oceans Conference Proceedings. Kobe: IEEE, 2004: 1564-1569.
    [25] 吴小平, 冯正平. 基于蚁群算法的多AUV路径规划仿真研究[J]. 计算机仿真, 2009, 26(1): 150-153.

    Wu Xiao-ping, Feng Zheng-ping. Simulation of Path Planning of Multiple Autonomous Underwater Vehicles(AUVs) Based on Ant Colony Algorithm[J]. Computer Simulation, 2009, 26(1): 150-153.
    [26] Zhu D Q, Huang H, Yang S X. Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-organizing Map and Velocity Synthesis Method in Three-dimensional Underwater Workspace[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 504-514.
    [27] Wang Z, Gu D. Cooperative Target Tracking Control of Multiple Robots[J]. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3232-3240.
    [28] Kawakami H, Namerikawa T. Cooperative Target Capturing Strategy for Multi-vehicle Systems with Dynamic Network Topology[C]//American Control Conference. Louisiana: IEEE, 2009: 635-640.
    [29] Kim T H, Sugie T. Cooperative Control for Targetcapturing Task Based on a Cyclic Pursuit Strategy[J]. Automatica, 2007, 43: 1426-1431.
    [30] Sharma R, Kothari M, Taylor C N, et al. Cooperative Target-capturing with Inaccurate Target Information[C]// American Control Conference, Baltimore, 2010: 5520- 5525.
    [31] 袁健, 唐功友. 采用一致性算法与虚拟结构的多自主水下航行器编队控制[J]. 智能系统学报, 2011, 6(3): 248-253.

    Yuan Jian, Tang Gong-you. Formation Control of Autonomous Underwater Vehicles with Consensus Algorithms and Virtual Structure[J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 248-253.
    [32] Peng K, Yang Y P. Leader-following Consensus Problem with a Varying-velocity Leader and Time-varying Delays [J]. Advances in Physics, 2009, 388: 193-208.
  • 加载中
计量
  • 文章访问数:  1976
  • HTML全文浏览量:  31
  • PDF下载量:  1012
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 修回日期:  2019-01-08
  • 刊出日期:  2019-06-30

目录

    /

    返回文章
    返回
    服务号
    订阅号