• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生机器鱼胸鳍波动与摆动融合推进机制建模及实验研究

范 增 王扬威 刘 凯 赵东标

范 增, 王扬威, 刘 凯, 赵东标. 仿生机器鱼胸鳍波动与摆动融合推进机制建模及实验研究[J]. 水下无人系统学报, 2019, 27(2): 166-173. doi: 10.11993/j.issn.2096-3920.2019.02.007
引用本文: 范 增, 王扬威, 刘 凯, 赵东标. 仿生机器鱼胸鳍波动与摆动融合推进机制建模及实验研究[J]. 水下无人系统学报, 2019, 27(2): 166-173. doi: 10.11993/j.issn.2096-3920.2019.02.007
FAN Zeng, WANG Yang-wei, LIU Kai, ZHAO Dong-biao. Modeling and Experimental Research of Integrating Propulsion Mechanism of Pectoral Fin’s Fluctuation and Swing for the Biomimetic Robotic Fish[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 166-173. doi: 10.11993/j.issn.2096-3920.2019.02.007
Citation: FAN Zeng, WANG Yang-wei, LIU Kai, ZHAO Dong-biao. Modeling and Experimental Research of Integrating Propulsion Mechanism of Pectoral Fin’s Fluctuation and Swing for the Biomimetic Robotic Fish[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 166-173. doi: 10.11993/j.issn.2096-3920.2019.02.007

仿生机器鱼胸鳍波动与摆动融合推进机制建模及实验研究

doi: 10.11993/j.issn.2096-3920.2019.02.007
基金项目: 江苏省自然科学基金(BK20171416); 中央高校基本科研业务费专项资金(NS2016055).
详细信息
    通讯作者:

    王扬威(1980-), 男, 博士, 高级工程师. 主要从事仿生机器人、机电一体化技术及智能装备的研究.

  • 中图分类号: TP242; TB301.2

Modeling and Experimental Research of Integrating Propulsion Mechanism of Pectoral Fin’s Fluctuation and Swing for the Biomimetic Robotic Fish

  • 摘要: 为研制出高性能仿生水下推进器, 文中以魟鱼为仿生原型, 并借鉴摆动模式鱼类推进机制, 提出了一种胸鳍波动与摆动融合推进机制的新型推进方式。设计了仿生机器鱼的机械结构与控制系统, 建立了融合胸鳍波动与摆动推进机制的动力学模型, 在理论分析的基础上, 实验研究了平均推进力和游动速度与摆动胸鳍面积和频率、幅值等运动参数之间的关系。研究结果表明, 理论计算值与实验结果的变化趋势相同, 仿生机器鱼的平均推进力与平均游动速度随摆动胸鳍面积增大而先增大后减小, 随频率、幅值的增大呈线性递增关系, 最大平均推进力达2.8 N, 最大游速达121 mm/s。文中所做研究可为改善机器鱼的游动性能提供参考。

     

  • [1] Fish F E. Advantages of Natural Propulsive Systems[J]. Marine Technology Society Journal, 2013, 47(5): 37-44.
    [2] Sfakiotakis M, Lane D M, Davies J B C. Review of Fish Swimming Modes for Aquatic Locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
    [3] Tytell E D. Do Trout Swim Better Than Eels? Challenges for Estimating Performance Based on the Wake of Self-propelled Bodies[J]. Experiments in Fluids, 2007, 43(5): 701-712.
    [4] Suzuki H, Kato N, Suzumori K. Load Characteristics of Mechanical Pectoral Fin[J]. Experiments in Fluids, 2008, 44(5): 759-771.
    [5] 章永华, 何建慧. 仿生蓝点魟的结构设计及建模[J]. 机械科学与技术, 2012, 31(4): 627-632.

    Zhang Yong-hua, He Jian-hui. Mechanism Design and Modeling of a Biomimetic Bluespotted Ray[J]. Mechanical Science and Technology, 2012, 31(4): 627-632.
    [6] Triantafyllou M S, Triantafyllou G S. An Efficient Swimming Machine[J]. Scientific American, 1995, 272(3): 64-70.
    [7] 梁建宏, 邹丹, 王松, 等. SPC-II机器鱼平台及其自主航行实验[J]. 北京航空航天大学学报, 2005, 31(7): 709-713.

    Liang Jian-hong, Zou Dan, Wang Song, et al. Trial Voyage of SPC-II Fish Robot[J]. Journal of Bejing University of Aeronautics and Astronautics, 2005, 31(7): 709-713.
    [8] Liu J, Hu H. Biological Inspiration: From Carangiform Fish to Multi-Joint Robotic Fish[J]. Journal of Bionic Engineering, 2010, 7(1): 35-48.
    [9] Asadnia M, Kottapalli A G, Haghighi R, et al. MEMS Sensors for Assessing Flow-related Control of an Underwater Biomimetic Robotic Stingray[J]. Bioinspiration & Biomimetics, 2015, 10(3): 036008.
    [10] Epstein M, Colgate J E, Maciver M A. Generating Thrust with a Biologically-Inspired Robotic Ribbon Fin[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2007: 2412-2417.
    [11] 章永华. 柔性仿生波动鳍推进理论与实验研究[D]. 合肥: 中国科学技术大学, 2008.
    [12] 王扬威. 仿生墨鱼机器人及其关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [13] Behbahani S B, Wang J, Tan X. A Dynamic Model for Robotic Fish with Flexible Pectoral Fins[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, NSW, Australia: IEEE, 2013, 8212: 1552-1557.
    [14] Wei Q P, Wang S, Dong X, Tan M, et al.Design and Kinetic Analysis of a Biomimetic Underwater Vehicle with Two Undulating Long-fins[J]. Acta Automatica Sinica, 2013, 39(8): 1330-1338.
    [15] Bi S, Niu C, Cai Y, et al. A Waypoint-tracking Controller for a Bionic Autonomous Underwater Vehicle with Two Pectoral Fins[J]. Advanced Robotics, 2014, 28(10): 673-681.
    [16] Liao P, Zhang S, Sun D. A Dual Caudal-fin Miniature Robotic Fish with an Integrated Oscillation and Jet Propulsive Mechanism[J]. Bioinspiration & Biomimetics, 2018, 13(3): 036007.
    [17] Rosenberger L J, Westneat M W. Functional Morphology of Undulatory Pectoral Fin Locomotion in the Stingray Taeniura Lymma(Chondrichthyes: Dasyatidae)[J]. The Journal of Experimental Biology, 1999, 202(24): 3523-3539.
    [18] Lighthill M J. Large-Amplitude Elongated-Body Theory of Fish Locomotion[J]. Proceedings of the Royal Society of London, 1971, 179(1055): 125-138.
    [19] 俞经虎, 竺长安, 朱家祥, 等. 仿生机器鱼尾鳍的动力学研究[J]. 系统仿真学报, 2005, 17(4): 947-949.

    Yu Jing-hu, Zhu Chang-an, Zhu Jia-xiang, et al. Research of Steady Control of Tail Fin of Robotic-fish[J]. Journal of System Simulation, 2005, 17(4): 947-949.
    [20] Hong C, Zhu C A. Modeling the Dynamics of Biomimetic Underwater Robot Fish[C]//IEEE International Confer-ence on Robotics and Biomimetics. Shatin, China: IEEE, 2005: 478-483.
  • 加载中
计量
  • 文章访问数:  714
  • HTML全文浏览量:  26
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-10-08
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回
    服务号
    订阅号