• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IPMC驱动柔性机器鱼速度控制系统

常龙飞 李超群 牛清正 杨 倩 胡小品 何青松 吴玉程

常龙飞, 李超群, 牛清正, 杨 倩, 胡小品, 何青松, 吴玉程. IPMC驱动柔性机器鱼速度控制系统[J]. 水下无人系统学报, 2019, 27(2): 157-165. doi: 10.11993/j.issn.2096-3920.2019.02.006
引用本文: 常龙飞, 李超群, 牛清正, 杨 倩, 胡小品, 何青松, 吴玉程. IPMC驱动柔性机器鱼速度控制系统[J]. 水下无人系统学报, 2019, 27(2): 157-165. doi: 10.11993/j.issn.2096-3920.2019.02.006
CHANG Long-fei, LI Chao-qun, NIU Qing-zheng, YANG Qian, HU Xiao-pin, HE Qing-song, WU Yu-cheng. Speed Control System of Soft Robotic Fish Actuated by IPMC[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 157-165. doi: 10.11993/j.issn.2096-3920.2019.02.006
Citation: CHANG Long-fei, LI Chao-qun, NIU Qing-zheng, YANG Qian, HU Xiao-pin, HE Qing-song, WU Yu-cheng. Speed Control System of Soft Robotic Fish Actuated by IPMC[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 157-165. doi: 10.11993/j.issn.2096-3920.2019.02.006

IPMC驱动柔性机器鱼速度控制系统

doi: 10.11993/j.issn.2096-3920.2019.02.006
基金项目: 国家自然科学基金(51605131); 安徽省自然科学基金青年项目(1608085QE100)
详细信息
    作者简介:

    常龙飞(1988-), 女, 博士, 讲师, 主要研究方向为智能材料与结构.

  • 中图分类号: TP242; TB381

Speed Control System of Soft Robotic Fish Actuated by IPMC

  • 摘要: 离子聚合物金属复合材料(IPMC)作为一种典型的柔性智能材料, 具有质量轻、变形大, 可在水下运行等独特优点, 在制作柔性机器鱼领域展现了突出优势。实现IPMC驱动机器鱼的独立运行和速度可控对于推动其实际应用具有重要意义。由于IPMC性能限制, 使得机器鱼负载能力有限, 对传感器和控制单元的质量和体积均有较高要求; 同时由于游动速度信号的采集和处理较为困难等原因, 现有IPMC驱动机器鱼大多是以开环方式来控制, 少数关于游动速度的反馈控制也是以理论研究为主或者借助外接仪器和传感器来测量参数, 均未能实现独立运动下IPMC驱动机器鱼的速度反馈控制。因此, 文中在制造无外接电源、独立运动机器鱼的前提下实现对游动速度的闭环控制, 通过在机器鱼内部安装惯性测量单元来测量游动速度, 并对其设计了比例-积分-微分(PID)控制器反馈速度控制系统, 利用MATLAB对控制系统进行仿真, 使用单片机、陀螺仪等制作印制电路板(PCB), 利用性能优良的IPMC材料制备具有可观负载能力的机器鱼样机, 并进行了预设速度分别为3 mm/s和6 mm/s时的实验。实验结果表明, 机器鱼的独立运行和速度得到了精确控制, 最终使得机器鱼约在1.8 s时达到预设速度且稳态误差保持在 mm/s以内, 速度控制误差不超过8%。文中所做研究可为机器鱼游动闭环控制研究提供参考。

     

  • [1] Rus D, Tolley M T. Design, Fabrication and Control of Soft Robots[J]. Nature, 2015, 521(7553): 467-475.
    [2] Kim S, Laschi C, Trimmer B. Soft Robotics: a Bioinspired Evolution in Robotics[J]. Trends in Biotechnology, 2013, 31(5): 287.
    [3] Deepak T, Christopher D R, William M K, et al. Soft Robotics: Biological Inspiration, State of the Art, and Future Research[J]. Applied Bionics & Biomechanics, 2014, 5(3): 99-117.
    [4] Chu W S, Lee K T, Song S H, et al. Review of Biomimetic Underwater Robots Using Smart Actuators[J]. Interna-tional Journal of Precision Engineering & Manufacturing, 2012, 13(7): 1281-1292.
    [5] 李铁风, 李国瑞, 梁艺鸣, 等. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766.

    Li Tie-feng, Li Guo-rui, Liang Yi-ming, et al. Research Review of Structural Mechanism and Driving Materials of Software Robots[J]. Journal of Mechanics, 2016, 48(4): 756-766.
    [6] Asaka K, Oguro K, Nishimura Y, et al. Bending of Poly-electrolyte Membraneplatinum Composites by Electric Stimuli I. Response Characteristics to Various Waveforms[J]. Polymer Journal, 1995, 27: 436-440.
    [7] Baughman R H. Conducting Polymer Artificial Muscles[J]. Synthetic Metals, 1996, 78: 339-353.
    [8] Fukushima T, Asaka K, Kosaka A, et al. Fully Plastic Actuator through Layer-By-Layer Casting With Ionic- Liq-uid-Based Bucky Gel[J]. Angewandte Chemie-International Edition, 2005, 44(16): 2410-2413.
    [9] Tanaka T, Nishio I, Sun S T, et al. Collapse of Gels in an Electric Field[J]. Science, 1982, 218(4571): 467-469.
    [10] Kalia S, Avérous L. Biopolymers: Biomedical and Environmental Applications[M]. USA: Wiley, 2011.
    [11] Shahinpoor M. Potential Applications of Electroactive Polymer Sensors and Actuators in MEMS Technologies[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2001, 4234: 203-214.
    [12] Jung K, Nam J, Choi H. Investigations on Actuation Characteristics of IPMC Artificial Muscle Actuator[J]. Sensors & Actuators A Physical, 2003, 107(2): 183-192.
    [13] Chen Z, Shatara S, Tan X. Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer-Metal Composite Caudal Fin[J]. IEEE/ASME Transactions on Mechatronics, 2009, 15(3): 448-459.
    [14] Mbemmo E, Chen Z, Shatara S, et al. Modeling of Bio-mimetic Robotic Fish Propelled by an Ionic Polymer-metal Composite Actuator[C]//IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008: 689-694.
    [15] Chen Z. A Review on Robotic Fish Enabled by Ionic Polymer-metal Composite Artificial Muscles[J]. Robotics & Biomimetics, 2017, 4(1): 24.
    [16] Mojarrad M, Shahinpoor M. Biomimetic Robotic Propul-sion Using Polymeric Artificial Muscles[C]//IEEE International Conference on Robotics and Automation. Albuquerque, NM, USA: IEEE, 1997: 2152-2157.
    [17] Byungkyu K, Deok-Ho K, Jaehoon J, et al. A Biomimetic Undulatory Tadpole Robot Using Ionic Polymer Metal Composite Actuators[J]. Smart Materials & Structures, 2005, 14(6): 1-7.
    [18] Guo S, Ge Y, Li L, et al. Underwater Swimming Micro Robot Using IPMC Actuator[C]//IEEE International Conference on Mechatronics and Automation. Luoyang, Henan, China: IEEE, 2006: 249-254.
    [19] Ye X, Su Y, Guo S. A Centimeter-scale Autonomous Robotic Fish Actuated by IPMC Actuator[C]//IEEE International Conference on Robotics and Biomimetics. Sanya, China: IEEE, 2007: 262-267.
    [20] Aureli M, Kopman V, Porfiri M. Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 603-614.
    [21] Shen Q, Wang T, Liang J, et al. Hydrodynamic Performance of a Biomimetic Robotic Swimmer Actuated by Ionic Polymer-metal Composite[J]. Smart Materials & Structures, 2013, 22(7): 075035.
    [22] Guo S, Fukuda T, Asaka K. A New Type of Fish-like Underwater Microrobot[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 136-141.
    [23] 苏玉东, 叶秀芬, 郭书祥. 基于IPMC驱动的自主微型机器鱼[J]. 机器人, 2010, 32(2): 262-270.

    Su Yu-dong, Ye Xiu-fen, Guo Shu-xiang. Autonomous Micro-robot Fish Based on IPMC Drive[J]. Robot, 2010, 32(2): 262-270.
    [24] Hubbard J J, Fleming M, Palmre V, et al. Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3): 540-551.
    [25] Chen Z, Um T I, Bart-Smith H. A Novel Fabrication of Ionic Polymer–metal Composite Membrane Actuator Ca-pable of 3-dimensional Kinematic Motions[J]. Sensors & Actuators A Physical, 2011, 168(1): 131-139.
    [26] Takagi K, Yamamura M, Luo Z W, et al. Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 1861-1866.
    [27] Yeom S W, Oh I K. A Biomimetic Jellyfish Robot Based on Ionic Polymer Metal Composite Actuators[J]. Smart Material Structures, 2009, 18(8): 085002.
    [28] Najem J, Sarles S A, Akle B, et al. Biomimetic jellyfish-inspired Underwater Vehicle Actuated by Ionic Polymer Metal Composite Actuators[J]. Smart Material Structures, 2012, 21(9): 299-312.
    [29] Kamamichi N, Yamakita M, Asaka K, et al. A Snake-like Swimming Robot Using IPMC Actuator/sensor[C]//IEEE International Conference on Robotics and Automation. Orlando, FL, USA: IEEE, 2006: 1812-1817.
    [30] Guo S, Fukuda T, Kato N, et al. Development of Underwater Microrobot Using ICPF Actuator[C]//Proceedings. 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE, 1998: 1829-1834.
    [31] Tan X, Drew K, Nathan U, et al. An Autonomous Robotic Fish for Mobile Sensing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 5424-5429.
    [32] Shen Q, Wang T, Wen L, et al. Modelling and Fuzzy Control of an Efficient Swimming Ionic Polymer-metal Composite Actuated Robot[J]. International Journal of Advanced Robotic Systems, 2013, 10(4): 1.
    [33] Rosly M A, Yussof H, Shaari M F, et al. Speed Control Mechanism for IPMC Based Biomimetic Flapping Thruster[C]//IEEE International Symposium on Robotics and Intelligent Sensors. Ottawa: IEEE, 2017: 218-223.
    [34] Webb B P W, Weihs D. Fish Biomechanics[M]. NewYork, America: Praeger Publishers, 1983: 312-338.
  • 加载中
计量
  • 文章访问数:  507
  • HTML全文浏览量:  40
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-19
  • 修回日期:  2016-12-18
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回
    服务号
    订阅号