• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下无人集群仿生人工侧线探测技术研究进展

胡 桥 刘 钰 赵振轶 朱子才

胡 桥, 刘 钰, 赵振轶, 朱子才. 水下无人集群仿生人工侧线探测技术研究进展[J]. 水下无人系统学报, 2019, 27(2): 114-122. doi: 10.11993/j.issn.2096-3920.2019.02.001
引用本文: 胡 桥, 刘 钰, 赵振轶, 朱子才. 水下无人集群仿生人工侧线探测技术研究进展[J]. 水下无人系统学报, 2019, 27(2): 114-122. doi: 10.11993/j.issn.2096-3920.2019.02.001
HU Qiao, LIU Yu, ZHAO Zhen-yi, ZHU Zi-cai. Research Advances of Biomimetic Artificial Lateral Line Detection Technology for Unmanned Underwater Swarm[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 114-122. doi: 10.11993/j.issn.2096-3920.2019.02.001
Citation: HU Qiao, LIU Yu, ZHAO Zhen-yi, ZHU Zi-cai. Research Advances of Biomimetic Artificial Lateral Line Detection Technology for Unmanned Underwater Swarm[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 114-122. doi: 10.11993/j.issn.2096-3920.2019.02.001

水下无人集群仿生人工侧线探测技术研究进展

doi: 10.11993/j.issn.2096-3920.2019.02.001
基金项目: 国家自然科学基金重大项目(61890961); 装备预研领域基金项目(61404160503); 中央高校基本科研业务费(国防重大项目培育xjjgf2018005); 陕西省重点研发计划重点项目资助(2018ZDXM-GY-111)
详细信息
    作者简介:

    胡 桥(1977-), 男, 博士, 教授, 研究方向为水下(仿生)机器人、智能目标感知等.

  • 中图分类号: TJ630; U674; TB566

Research Advances of Biomimetic Artificial Lateral Line Detection Technology for Unmanned Underwater Swarm

  • 摘要: 水下探测是实施海洋任务的先决条件和技术保障, 也是近年来水下无人集群研究方向的技术难点和科研热点。然而, 现有的声学和光学探测系统由于易受水下环境干扰因素影响, 使其难以为水下无人集群提供精确的近场感知信息, 也成为制约水下无人集群发展的技术瓶颈, 因此探索水下新型探测技术十分必要。文中阐述了水下无人集群探测的特点与难点, 从仿生人工侧线(ALL)阵列和信号处理两方面, 综述和分析了水下无人集群仿生人工侧线探测技术的国内外研究进展, 指出当前研究中存在的关键问题, 包括人工侧线的感知原理、布局、微工艺, 以及人工智能算法的应用, 讨论了解决这些关键问题的途径。

     

  • [1] Pham L V, Dickerson B, Sanders J, et al. UAV Swarm Attack: Protection System Alternatives for Destroyers[R]//Systems Engineering Project Report, California: Naval Postgraduate School, 2012.
    [2] Tyo J S. Hyperspectral Measurement of the Scattering of Polarized Light by Skin[J]. Proc Spie, 2011, 8160(22): 31.
    [3] 孙荣光, 舒象兰, 曲大伟. 浅海声信道中的声纳脉冲传播多途效应[J]. 兵器装备工程学报, 2013, 34(12): 56-59.

    Sun Rong-guang, Shu Xiang-lan, Qu Da-wei. Multipath Effect of Sonar Pulse Waveforms in Shallow Water[J]. Journal of Ordnance Equipment Engineering, 2013, 34(12): 56-59.
    [4] Zhang Y, Streitlien K, Bellingham J G, et al. Acoustic Doppler Velocimeter Flow Measurement from an Autonomous Underwater Vehicle with Applications to Deep Ocean Convection[J]. Journal of Atmospheric & Oceanic Technology, 2000, 18(12): 2038-2051.
    [5] Willcox J S, Bellingham J G, Zhang Y, et al. Performance Metrics for Oceanographic Surveys with Autonomous Underwater Vehicles[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 711-725.
    [6] Liu Y, Passino K M. Stability Analysis of Swarms in a Noisy Environment[C]//42nd IEEE International Conference on Decision and Control. Maui, HI, USA: IEEE, 2003.
    [7] Leonard N E, Fiorelli E. Virtual Leaders, Artificial Potentials and Coordinated Control of Groups[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, USA: IEEE, 2001.
    [8] Gallowaykevin C, Beckerkaitlyn P, PhillipsBrennan, et al. Soft Robotic Grippers for Biological Sampling on Deep Reefs[J]. Soft Robotics, 2016, 3(1): 23-33.
    [9] Yoon S, Qiao C. Cooperative Search and Survey Using Autonomous Underwater Vehicles(AUVs)[J]. IEEE Transactions on Parallel & Distributed Systems, 2011, 22(3): 364-379.
    [10] Byrne R H, Savage E L. Algorithms and Analysis for Underwater Vehicle Plume Tracing[R]. United States: Sandia National Laboratories, 2003.
    [11] Schulz B, Hobson B, Kemp M, et al. Field Results of Multi-UUV Missions Using Ranger Micro-UUVs[C]// Oceans 2003. San Diego, USA: IEEE, 2003: 956-961.
    [12] Chen J, Sun D, Yang J, et al. Leader-Follower Formation Control of Multiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme[J]. International Journal of Robotics Research, 2010, 29(6): 727-747.
    [13] Zhao W, Hu Y, Wang L. Construction and Central Pattern Generator-Based Control of a Flipper-Actuated Turtle-Like Underwater Robot[J]. Advanced Robotics, 2009, 23(1-2): 19-43.
    [14] Zou K, Wang C, Xie G, et al. Cooperative Control for Trajectory Tracking of Robotic Fish[C]//2009 American Control Conference. St. Louis, USA: IEEE, 2009: 5504-5509.
    [15] Shao J, Yu J, Wang L. Formation Control of Multiple Biomimetic Robotic Fish[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2007: 2503-2508.
    [16] Qiao G, Gan S, Liu S, et al. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication[J]. Sensors, 2018, 18(6): 1700.
    [17] Voronina E P, Hughes D R. Lateral Line Scale Types and Review of Their Taxonomic Distribution[J]. Acta Zoologica, 2017, 99(1): 65-86.
    [18] Bleckmann H, Zelick R. Lateral Line System of Fish[J]. Integrative Zoology, 2006, 25(1): 411-453.
    [19] Mekdara P J, Schwalbe M, Coughlin L L, et al. The Effects of Lateral Line Ablation and Regeneration in Schooling Giant Danios[J]. Journal of Experimental Biology, 2018, 221(Pt 8): jeb.175166.
    [20] Rizzi F, Qualtieri A, Dattoma T, et al. Biomimetics of Underwater Hair Cell Sensing[J]. Microelectronic Engineering, 2015, 132: 90-97.
    [21] Liu G, Wang A, Wang X, et al. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish[J]. Applied Bionics and Biomechanics, 2016, 2016(5): 1-15.
    [22] Nelson K , Mohseni K . Design of a 3-D Printed, Modular Lateral Line Sensory System for Hydrodynamic Force Estimation[J]. Marine Technology Society Journal, 2017, 51(5): 103-115.
    [23] Liu G , Wang M , Wang A , et al. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System[J]. Sensors, 2018, 18(3): 838.
    [24] Tan S. Underwater Artificial Lateral Line Flow Sensors[J]. Microsystem Technologies, 2014, 20(12): 2123-2136.
    [25] Fan Z, Chen J, Zou J, et al. Design and Fabrication of Artificial Lateral Line Flow Sensors[J]. Journal of Micro-mechanics & Microengineering, 2002, 12(5): 655.
    [26] Yang Y, Nguyen N, Chen N, et al. Artificial Lateral Line with Biomimetic Neuromasts to Emulate Fish Sensing[J]. Bioinspiration & Biomimetics, 2010, 5(1): 16001.
    [27] Mcconney M E, Chen N, Lu D, et al. Biologically Inspired Design of Hydrogel-capped Hair Sensors for Enhanced Underwater Flow Detection[J]. Soft Matter, 2009, 5(2): 292-295.
    [28] Izadi N, Krijnen G J M. Design and Fabrication Process for Artificial Lateral Line Sensors[M]//Frontiers in Sensing. Vienna: Springer, 2012: 405-421.
    [29] Kottapalli A G P, Asadnia M, Miao J M, et al. A Flexible Liquid Crystal Polymer MEMS Pressure Sensor Array for Fish-like Underwater Sensing[J]. Smart Materials & Structures, 2012, 21(11): 115030.
    [30] Yaul F M, Bulovic V, Lang J H. A Flexible Underwater Pressure Sensor Array Using a Conductive Elastomer Strain Gauge[J]. Journal of Microelectromechanical Systems, 2012, 21(4): 897-907.
    [31] Asadnia M, Kottapalli A G P, Shen Z, et al. Flexible and Surface-Mountable Piezoelectric Sensor Arrays for Underwater Sensing in Marine Vehicles[J]. IEEE Sensors Journal, 2013, 13(10): 3918-3925.
    [32] Asadnia M, Kottapalli A G, Miao J, et al. Artificial Fish Skin of Self-powered Micro-electromechanical Systems Hair Cells for Sensing Hydrodynamic Flow Phenomena[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150322.
    [33] Izadi N, De Boer M J, Berenschot J W, et al. Fabrication of Superficial Neuromast Inspired Capacitive Flow Sensors[J]. Journal of Micromechanics & Microengineering, 2010, 20(8): 085041.
    [34] Krijnen G, Lammerink T, Wiegerink R, et al. Cricket Inspired Flow-Sensor Arrays[C]//Sensors, 2007 IEEE. Atlanta, GA, USA: IEEE, 2007: 539-546.
    [35] Stocking J B, Eberhardt W C, Shakhsheer Y A, et al. A Capacitance-based Whisker-like Artificial Sensor for Fluid Motion Sensing[C]//Sensors, 2010 IEEE. Kona, HI, USA: IEEE, 2010: 2224-2229.
    [36] Baar J J V, Dijkstra M, Wiegerink R J, et al. Fabrication of Arrays of Artificial Hairs for Complex Flow Pattern Recognition[C]//Sensors, 2003 IEEE. Toronto, Canada: IEEE, 2004: 332-336.
    [37] Klein A, Bleckmann H. Determination of Object Position, Vortex Shedding Frequency and Flow Velocity Using Artificial Lateral Line Canals[J]. Beilstein Journal of Nano-technology, 2011, 2(1): 276-283.
    [38] Herzog H, Steltenkamp S, Klein A, et al. Micro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts[J]. Micromachines, 2015, 6: 1189-1212.
    [39] Dagamseh A M K, Lammerink T S J, Kolster M L, et al. Dipole-source Localization Using Biomimetic Flow-sensor Arrays Positioned as Lateral-line System[J]. Sensors & Actuators A: Physical, 2010, 162(2): 355-360.
    [40] Chen J, Engel J, Chen N, et al. Artificial Lateral Line and Hydrodynamic Object Tracking[C]//IEEE International Conference on MICRO Electro Mechanical Systems, 2006. Mems 2006 Istanbul. Turkey: IEEE, 2006: 694-697.
    [41] Liu P, Zhu R, Que R. A Flexible Flow Sensor System and Its Characteristics for Fluid Mechanics Measurements[J]. Sensors, 2009, 9(12): 9533-9543.
    [42] Zhu Z, Horiuchi T, Kruusam?e K, et al. Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor[J]. Journal of Physical Chemistry B, 2016, 120(12): 3215-3225.
    [43] Kocer B, Zangrilli U, Akle B, et al. Experimental and Theoretical Investigation of Ionic Polymer Transducers in Shear Sensing[J]. Journal of Intelligent Material Systems and Structures, 2014, 14: 1-13.
    [44] Ahrari A, Lei H, Deb K, et al. Robust Design Optimization of Artificial Lateral Line System[EB/OL]. [2018- 05-06].http://pdfs.semanticscholar.org/85ab/9776ef0d412bed74811c9c9528d771561743.pdf
    [45] 仲昆. 机器鱼人工侧线系统的设计与环境感知研究[D]. 南昌: 华东交通大学, 2014.
    [46] Zheng X, Wang C, Fan R, et al. Artificial Lateral Line Based Local Sensing between Two Adjacent Robotic Fish[J]. Bioinspiration & Biomimetics, 2017, 13(1): 016002.
    [47] Hu B, Hua C, Chen C, et al. MUBFP: Multi-User Beam-forming and Partitioning for Sum Capacity Maximization in MIMO Systems[J]. IEEE Vehicular Technology Society, 2016, 66(1): 233-245.
    [48] Lin X, Tao M, Xu Y, et al. Outage Probability and Finite-SNR Diversity-Multiplexing Tradeoff for Two-Way Relay Fading Channels[J]. IEEE Transactions on Vehicular Technology, 2013, 62(7): 3123-3136.
    [49] Vaidyanathan P P, Pal P. Sparse Sensing With Co-Prime Samplers and Arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586.
    [50] Vaidyanathan, P P. Theory of Sparse Coprime Sensing in Multiple Dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592-3608.
    [51] Abdulsadda A T, Tan X B. Underwater Source Localization Using an IPMC-based Artificial Lateral Line[C]// IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 2719-2724.
    [52] Wu N L, Wu C, Tong G E, et al. Flow Recognition of Underwater Vehicle Based on the Perception Mechanism of Lateral Line[J]. Journal of Mechanical Engineering, 2016, 52(13): 54-59.
    [53] Boulogne L H, Wolf B J, Wiering M A, et al. Performance of Neural Networks for Localizing Moving Objects with an Artificial Lateral Line[J]. Bioinspiration & Biomimetics, 2017, 12(5): 056009.
    [54] Dagamseh A, Wiegerink R, Lammerink T, et al. Artificial Lateral-line System for Imaging Dipole Sources Using Beamforming Techniques[J]. Procedia Engineering, 2011, 25(35): 779-782.
    [55] Dagamseh A, Wiegerink R, Lammerink T, et al. Imaging Dipole Flow Sources Using an Artificial Lateral-line System Made of Biomimetic Hair Flow Sensors[J]. Journal of the Royal Society Interface, 2013, 10(83): 20130162.
    [56] Kamal S, Mohammed S K, Pillai P R S, et al. Deep Learning Architectures for Underwater Target Recognition[C]//2013 Ocean Electronics. Kochi, India: IEEE, 2013: 48-54.
    [57] Cao X, Zhang X, Yu Y, et al. Deep Learning-based Recognition of Underwater Target[C]//2016 IEEE International Conference on Digital Signal Processing. Beijing, China: IEEE, 2016: 89-93.
    [58] Chen Y, Xu X. The Research of Underwater Target Recognition Method Based on Deep Learning[C]//IEEE International Conference on Signal Processing, Communications and Computing. Xiamen, China: IEEE, 2017: 1-5.
    [59] Zhu P, Isaacs J, Fu B, et al. Deep Learning Feature Extraction for Target Recognition and Classification in Underwater Sonar Images[C]//IEEE Conference on Decision and Control. Melbourne, Australia: IEEE, 2017: 2724-2731.
    [60] Liu G, Gao S, Sarkodie G, et al. A Novel Biomimetic Sensor System for Vibration Source Perception of Autonomous Underwater Vehicles Based on Artificial Lateral Lines[J]. Measurement Science and Technology, 2018, 29: 125102.
  • 加载中
计量
  • 文章访问数:  1331
  • HTML全文浏览量:  23
  • PDF下载量:  1064
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2018-12-10
  • 刊出日期:  2019-04-30

目录

    /

    返回文章
    返回
    服务号
    订阅号