• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁力对潜艇绕流流场局部扰动优化效果

张 菲 刘宗凯 周本谋 李俊伟

张 菲, 刘宗凯, 周本谋, 李俊伟. 电磁力对潜艇绕流流场局部扰动优化效果[J]. 水下无人系统学报, 2019, 27(1): 014-19. doi: 10.11993/j.issn.2096-3920.2019.01.003
引用本文: 张 菲, 刘宗凯, 周本谋, 李俊伟. 电磁力对潜艇绕流流场局部扰动优化效果[J]. 水下无人系统学报, 2019, 27(1): 014-19. doi: 10.11993/j.issn.2096-3920.2019.01.003
ZHANG Fei, LIU Zong-kai, ZHOU Ben-mou, LI Jun-wei. Optimization Effect of Lorentz Force on Local Perturbation of Flow Field around Submarine[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 014-19. doi: 10.11993/j.issn.2096-3920.2019.01.003
Citation: ZHANG Fei, LIU Zong-kai, ZHOU Ben-mou, LI Jun-wei. Optimization Effect of Lorentz Force on Local Perturbation of Flow Field around Submarine[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 014-19. doi: 10.11993/j.issn.2096-3920.2019.01.003

电磁力对潜艇绕流流场局部扰动优化效果

doi: 10.11993/j.issn.2096-3920.2019.01.003
基金项目: 国家自然科学基金项目资助(11702139); 南京理工大学先进固体激光工业和信息化部重点实验室开放基金(3091801 4115-009)
详细信息
    作者简介:

    张 菲(1994-), 女, 硕士, 主要研究为电磁流体力学方向.

  • 中图分类号: TJ67; O361

Optimization Effect of Lorentz Force on Local Perturbation of Flow Field around Submarine

  • 摘要: 潜艇水下航行时, 由于流体粘性的存在导致流动分离、壁面边界层转捩等问题, 使得潜艇阻力增大,产生了大量的涡并伴随有涡的不规则脱落。文中基于粘性不可压Navier-Stokes控制方程, 使用有限体积法对Re=107潜艇流场进行数值仿真, 分析不同作用系数的电磁力分别施加于A=1, A=2, A=3情况下的潜艇绕流流场结构和受力变化。结果表明, 当作用电磁力系数N=1.5的电磁力施加于半球艏部与中体艇身交界处(A=1, N=1.5)时, 艇身的涡结构被有效抑制, 对围壳顶盖的控制(A=2, N=1.5)则可以有效抑制涡脱落现象, 同时阻力下降最多。由此可知, 合理利用适当的电磁力控制围壳边界层的流动能有效抑制不规则涡的产生及其脱落, 减少流噪声, 有助于提高潜艇的隐蔽性及动力性能。文中研究可为进一步研究优化潜艇流场问题提供参考。

     

  • [1] Chase N, Carrica P M. Submarine Propeller Computations and Application to Self-propulsion of DARPA Suboff[J]. Ocean Engineering, 2013, 60: 68-80.
    [2] Shariati S K, Mousavizadegan S H. The Effect of Appendages on the Hydrodynamic Characteristics of an Underwater Vehicle Near the Free Surface[J]. Applied Ocean Research, 2017, 67: 31-43.
    [3] Chen L, Gillivray I M. Characteristics of Sound Radiation by Turbulent Flow over a Hydrofoil and a Bare-hull SUBOFF[C]//Australian Acoustical Society Conference 2011, Acoustics 2011: Breaking New Ground. Gold Coast, Australia: Proceedings of Acoustics, 2011: 443-450.
    [4] Berger T W, Kim J, Lee C, et al. Turbulent Boundary Layer Control Utilizing the Lorentz Force[J]. Physics of Fluids, 2000, 12(3): 631-649.
    [5] 张辉, 范宝春, 贺旺, 等. 电磁力作用下的绕流减阻与优化控制[J]. 兵工学报, 2010, 31(10): 1291-1297.

    Zhang Hui, Fan Bao-chun, He Wang, et al. Drag Reduction and Optimal Control of Cylinder Wake via Lorentz Force[J]. Acta Armamentarii, 2010, 31(10): 1291-1297.
    [6] Ask J, Davidson L. A Numerical Investigation of the Flow Past a Generic Side Mirror and its Impact on Sound Generation[J]. Journal of Fluids Engineering, 2009, 131(6): 061102.
    [7] Huang Y D, Zhou B M, Tang Z L, et al. Transition Scenario and Transition Control of The Flow over a Semi-infinite Square Leading-edge Plate[J]. Physics of Fluids, 2017, 29(7): 074105.
    [8] 刘宗凯, 薄煜明, 王军, 等. 电磁力滤波与快速反射镜光学补偿在潜航器光轴稳定控制中的应用[J]. 物理学报, 2017, 66(8): 084704.

    Liu Zong-Kai, Bo Yu-Ming, Wang Jun, et al. Lorentz Force Filtering and Fast Steering Mirror Optical Compensation in Optical Axis Stability Control for Photoelectric Mast[J]. Acta Physica Sinica, 2017, 66(8): 084704.
    [9] Zhang H, Fan B C, Chen Z H. Numerical Study of the Suppression Mechanism of Vortices-induced Vibration by Symmetric Lorentz Forces[J]. Journal of Fluids and Structures, 2014, 48: 62-80.
    [10] Altintas A, Davidson L. Direct Numerical Simulation Analysis of Spanwise Oscillating Lorentz Force in Turbulent Channel Flow at Low Reynolds Number[J]. Acta Mechanica, 2017, 228(4): 1269-1286.
    [11] Lim S, Choi B. A Study on the MHD (magneto hydrodynamic) Micropump with Side-walled Electrodes[J]. Journal of Mechanical Science and Technology, 2009, 23(3): 739-749.
    [12] Albrecht T, Stiller J, Metzkes H. Electromagnetic Flow Control in Poor Conductors[J]. The European Physical Journal Special Topics, 2013, 220(1): 275-285.
    [13] Liu H X, Zhou B M, Liu Z K, et al. Numerical Simulation of Flow around a Body of Revolution with an Appendage Controlled by Electromagnetic Force[J]. Journal of Aero-space Engineering, 2013, 227(2): 303-310.
    [14] Breuer K S, Park J, Henoch C. Actuation and Control of a Turbulent Channel Flow Using Lorentz Forces[J]. Physics of Fluids, 2004, 16(4): 897-907.
  • 加载中
计量
  • 文章访问数:  660
  • HTML全文浏览量:  3
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-19
  • 修回日期:  2018-10-25
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回
    服务号
    订阅号