• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种AUV移动OFDM水声通信系统设计

李 斌 郑思远 曹秀岭 童 峰

李 斌, 郑思远, 曹秀岭, 童 峰. 一种AUV移动OFDM水声通信系统设计[J]. 水下无人系统学报, 2018, 26(6): 612-617. doi: 10.11993/j.issn.2096-3920.2018.06.016
引用本文: 李 斌, 郑思远, 曹秀岭, 童 峰. 一种AUV移动OFDM水声通信系统设计[J]. 水下无人系统学报, 2018, 26(6): 612-617. doi: 10.11993/j.issn.2096-3920.2018.06.016
LI Bin, ZHENG Si-yuan, CAO Xiu-ling, TONG Feng. Design on Mobile OFDM Underwater Acoustic Communication System for an AUV[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 612-617. doi: 10.11993/j.issn.2096-3920.2018.06.016
Citation: LI Bin, ZHENG Si-yuan, CAO Xiu-ling, TONG Feng. Design on Mobile OFDM Underwater Acoustic Communication System for an AUV[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 612-617. doi: 10.11993/j.issn.2096-3920.2018.06.016

一种AUV移动OFDM水声通信系统设计

doi: 10.11993/j.issn.2096-3920.2018.06.016
基金项目: 国家自然科学基金项目资助(11574258)
详细信息
    作者简介:

    李 斌(1990-), 男, 在读博士, 主要研究方向为水声通信与水声信号处理.

  • 中图分类号: U674.941; TN929.3

Design on Mobile OFDM Underwater Acoustic Communication System for an AUV

  • 摘要: 针对水声信道多径效应和多普勒频偏对移动正交频分复用(OFDM)水声通信产生的严重载波间干扰(ICI)和码间干扰(ISI), 采用时频差分编码方案, 互相关函数方法进行多普勒估计, 变采样率重采样进行多普勒补偿, 设计并实现了一种面向自主式水下航行器(AUV)的、易于工程实现的低复杂度移动OFDM水声通信系统。该系统能够有效避免残余多普勒补偿的问题, 同时对多径信道表现出一定程度的稳健性。海试结果表明, 该系统可在浅海信道复杂多径和一定多普勒影响的条件下正常工作, 实现了移动OFDM水声通信。

     

  • [1] Alaaeldeen M E A, 段文洋. 自主水下航行器发展概述[J]. 船舶力学, 2016, 20(6): 768-787.

    Alaaeldeen M E A, Duan Wen-yang. Overview on the Development of Autonomous Underwater Vehicles(AUVs) [J]. Journal of Ship Mechanics, 2016, 20(6): 768-787.
    [2] Paull L, Saeedi S, Seto M, et al. AUV Navigation and Localization: A Review[J]. IEEE Journal of Oceanic En-gineering, 2014, 39(1): 131-149.
    [3] Blidberg D R. The Development of Autonomous Under-water Vehicles(AUV); A Brief Summary[J]. IEEE Icra, 2001, 17(5): 209-212.
    [4] Bereketli A, Tumcakir M, Yazgi I, et al. Connectivity Analysis of an AUV Network with OFDM Based Communications[C]//2017 IEEE Underwater Technology. Busan: IEEE, 2017.
    [5] Yang Z, Huang J, Han J, et al. System on High-Speed Underwater Acoustic Communication with Multi-carrier [C]//2008 9th International Conference on Signal Pro-cessing. Beijing: IEEE, 2008.
    [6] Lionel L, Bruno J. Robust Nonlinear Path-Following Control of an AUV[J]. Journal of Oceanic Engineering, 2008, 33(2): 89-102.
    [7] Pollet T, Van Bladel M, Moeneclaey M. BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise[J]. IEEE Transactions on Communications, 1995, 43(234): 191-193.
    [8] Zhang Y, Liu H. MIMO-OFDM Systems in the Presence of Phase Noise and Doubly Selective Fading[J]. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2277-2285.
    [9] 王巍, 尹艳玲, 刘凇佐, 等. 基于频域变采样的OFDM水声移动通信多普勒补偿算法[J]. 声学技术, 2013, 32(1): 54-58.

    Wang Wei, Yin Yan-ling, Liu Song-zuo, et al. Doppler Compensation of Using Frequency Domain Resampling in Underwater Acoustic Mobile OFDM Communication[J]. Technical Acoustics, 2013, 32(1): 54-58.
    [10] 冯成旭, 许江湖, 罗亚松. 消除冗余循环前缀的水声信道OFDM频域均衡算法[J]. 哈尔滨工程大学学报, 2014, 35(4): 482-487.

    Feng Cheng-xu, Xu Jiang-hu, Luo Ya-song. Frequency-domain Equalization Algorithm to Eliminate Redundant Circular Prefix for OFDM Underwater Acoustic Communications[J]. Journal of Harbin Engineering University, 2014, 35(4): 482-487.
    [11] 普湛清, 王巍, 张扬帆, 等. UUV平台OFDM水声通信时变多普勒跟踪与补偿算法[J]. 仪器仪表学报, 2017, 38(7): 1634-1644.

    Pu Zhan-qing, Wang Wei, Zhang Yang-fan, et al. Time- variant Doppler Tracking and Compensation in Under-water Acoustic OFDM Communication for UUV Platform[J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1634-1644.
    [12] Haas E, Kaiser S. Two-dimensional Differential Demodulation for OFDM[J]. IEEE Transactions on Communications, 2003, 51(4): 580-586.
    [13] Haas E, Kaiser S. Analysis of Two-dimensional Differential Demodulation for OFDM[C]//Global Telecommunications Conference. San Francisco: IEEE, 2000.
    [14] Gong M, Ji Y, Han H, et al. Two-dimensional Differential Demodulation for 64-DAPSK Modulated OFDM Signals [C]//2010 7th IEEE Consumer Communications and Networking Conference. Las Vegas: IEEE, 2010.
    [15] Gong M, Han H, Zhang C, et al. A Low Complexity Two dimensional Differential Demodulation for OFDM Systems[J]. AEU-International Journal of Electronics and Communications, 2011, 65(11): 893-900.
    [16] 周跃海, 江伟华, 陈磊, 等. 采用时反和时频差分OFDM的水声语音通信方法[J]. 应用声学, 2015, 34(4): 283-290.

    Zhou Yue-hai, Jiang Wei-hua, Chen Lei, et al. Underwater Acoustic Speech Communication Using Time Reversal and Time-frequency Differential OFDM Methods[J]. Applied Acoustics, 2015, 34(4): 283-290.
    [17] Song A, Badiey M, Mcdonald V K, et al. Time Reversal Receivers for High Data Rate Acoustic Multiple-Input– Multiple-Output Communication[J]. IEEE Journal of Oceanic Engineering, 2013, 36(4): 525-538.
    [18] Yao T, Zhao W, Zhang Q, et al. Estimation of Doppler-Shift Based on Correlation-Peak Waveform[C]//International Conference on Communications, Circuits and Systems. Kokura: IEEE, 2007: 99-102.
    [19] 张翔. 水声通信中多普勒频移补偿的仿真研究[J]. 系统仿真学报, 2005, 17(5): 1172-1174.

    Zhang Xiang. Simulation Research on Doppler Compensation for Underwater Acoustic Communications[J]. Jour- nal of System Simulation, 2005, 17(5): 1172-1174.
    [20] Sharif B S, Neasham J, Hinton O R, et al. Doppler Compensation for Underwater Acoustic Communications[C]// Oceans’99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings. Seattle: IEEE, 1999.
  • 加载中
计量
  • 文章访问数:  791
  • HTML全文浏览量:  9
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2018-12-01
  • 刊出日期:  2018-12-31

目录

    /

    返回文章
    返回
    服务号
    订阅号