• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋声学目标探测技术研究现状和发展趋势

杨益新 韩一娜 赵瑞琴 刘雄厚 汪 勇

杨益新, 韩一娜, 赵瑞琴, 刘雄厚, 汪 勇. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-386. doi: 10.11993/j.issn.2096-3920.2018.05.001
引用本文: 杨益新, 韩一娜, 赵瑞琴, 刘雄厚, 汪 勇. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-386. doi: 10.11993/j.issn.2096-3920.2018.05.001
YANG Yi-xin, HAN Yi-na, ZHAO Rui-qin, LIU Xiong-hou, WANG Yong. Ocean Acoustic Target Detection Technologies: a Review[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-386. doi: 10.11993/j.issn.2096-3920.2018.05.001
Citation: YANG Yi-xin, HAN Yi-na, ZHAO Rui-qin, LIU Xiong-hou, WANG Yong. Ocean Acoustic Target Detection Technologies: a Review[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-386. doi: 10.11993/j.issn.2096-3920.2018.05.001

海洋声学目标探测技术研究现状和发展趋势

doi: 10.11993/j.issn.2096-3920.2018.05.001
基金项目: 国家重点研发计划(2016YFC1400200)
详细信息
    作者简介:

    杨益新(1975-), 男, 博士, 教授, 主要研究方向为水声信号处理.

  • 中图分类号: TJ630.34; TB566; O427.9; P733.23

Ocean Acoustic Target Detection Technologies: a Review

  • 摘要: 海洋声学目标探测——这一覆盖甚广的研究领域, 其具有多种研究思路和技术途径, 而利用水声通信组网技术将主被动探测节点连接成水声探测网络, 并对获取的多源信息进行融合, 是海洋声学目标探测技术发展的重要途径之一。基于此, 文中分别从被动探测技术、主动探测技术、水下通信组网和多源信息融合4个方面, 对海洋声学目标探测技术的发展脉络进行梳理, 介绍了相关理论方法的特点, 指出了各自的优缺点, 同时阐述了海洋声信道对目标探测的影响。最后, 从以上4个方面对海洋声学目标探测技术的未来发展趋势进行了展望: 被动探测技术从空域处理角度出发, 将会朝着大孔径阵列的稳健阵列处理技术、新型传感器及其阵列的研制, 以及信号处理与水声物理模型的充分结合这3个方面发展; 主动探测技术则会继续发展低频大功率探测技术、多基地组网探测技术和新体制主动探测技术, 同时智能化主动探测技术和生态友好型主动探测技术也将是其发展趋势; 水下通信组网技术未来将侧重发展如何利用网络协议提高通信可靠性、跨介质组网协议、面向任务的网络资源调度以及标准化水声网络实验平台建设; 多源信息融合探测技术则更多的是要进一步深入进行测量信息与信息间互补关系的建模研究。

     

  • [1] 杨益新. 声呐波束形成与波束域高分辨方位估计技术研究[D]. 西安: 西北工业大学, 2002.
    [2] 杨德森, 洪连进. 矢量水听器原理及应用引论[M]: 科学出版社, 2009.
    [3] 杨德森, 朱中锐, 田迎泽. 矢量声呐技术理论基础及应用发展趋势[J]. 水下无人系统学报, 2018, 26(3): 185-192.

    Yang De-sen, Zhu Zhong-rui, Tian Ying-ze. Theoretical Bases and Application Development Trend of Vector Sonar Technology[J]. Journal of Unmanned Undersea Sys-tems, 2018, 26(3): 185-192.
    [4] 刘孟庵. 拖曳线列阵声呐技术发展综述[J]. 声学与电子工程, 2006(3): 1-5.

    Liu Meng-an. Review of Technology Development for Towed Line Sonar Arrays[J]. Acoustics and Electronic Engineering, 2006(3): 1-5.
    [5] 庞博. 国外潜用拖曳阵声呐简介[J]. 声学与电子工程, 2012(1): 44-46.

    Pang Bo. Introduction of Foreign Towed Line Sonars of Submarine[J]. Acoustics and Electronic Engineering, 2012 (1): 44-46.
    [6] Lockheed Martin Space Systems Company. TB-29 series [EB/OL]. (2018-01-06)[2018-10-16]. http://www.lockhe- edmartin.com/.
    [7] 田坦. 声呐技术[M]: 哈尔滨工程大学出版社, 2010.
    [8] Thales Group. FLASH Dipping Sonar[EB/OL]. (2017- 5-18)[2018-10-16]. https://www.thalesgroup.com/en
    [9] L3 Company. HELRAS Dipping Sonar[EB/OL]. (2016- 12-02)[2018-10-16]. https://www.l3t.com/
    [10] DST. Barra Sonobuoy[EB/OL]. (2009-03-07)[2018-10-16]. https://www.dst.defence.gov.au/innovation/barraso- nobuoy.
    [11] Sonobuoy Tech Systems. ADAR Sonobuoy[EB/OL]. (2010- 06-17)[2018-10-16]. http://sonobuoytech-systems. com/.
    [12] Veen B D V, Buckley K M. Beamforming: A Versatile Approach to Spatial Filtering[J]. IEEE ASSP Magazine, 1988, 5(2): 4-24.
    [13] Van Trees H L. Optimum Array Processing: Part Iv of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, Inc., 2002.
    [14] 杨益新, 汪勇, 何正耀, 等. 传感器阵列超指向性原理及应用[M]. 北京: 科学出版社, 2018.
    [15] Doclo S, Moonen M. Superdirective Beamforming Robust against Microphone Mismatch[J]. IEEE Transactions on Audio, Speech and Language Processing, 2007, 15(2): 617-631.
    [16] Crocco M, Trucco A. Design of robust Superdirective Arrays with a Tunable Tradeoff between Directivity and Frequency-Invariance[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2169-2181.
    [17] Meyer J, Elko G W. A Highly Scalable Spherical Micro-phone Array Based on an Orthonormal Decomposition of the Soundfield[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), Orlando, FL, USA: IEEE, 2002.
    [18] Meyer J. Beamforming for a Circular Microphone Array Mounted on Spherically Shaped Objects[J]. Journal of the Acoustical Society of America, 2001, 109(1): 185-193.
    [19] Ma Y L, Yang Y X, He Z Y, et al. Theoretical and Practical Solutions for High-Order Superdirectivity of Circular Sensor Arrays[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 203-209.
    [20] Wang Y, Yang Y X, Ma Y L, et al. Robust High-Order Superdirectivity of Circular Sensor Arrays[J]. Journal of the Acoustical Society of America, 2014, 136(4): 1712- 1724.
    [21] Wang Y, Yang Y X, He Z Y, et al. A General Superdire- ctivity Model For Arbitrary Sensor Arrays[J]. Eurasip Journal on Advances in Signal Processing, 2015, 2015(68): 1-16.
    [22] 鄢社锋, 马远良. 传感器阵列波束优化设计及应用[M]. 北京: 科学出版社, 2009.
    [23] 马远良. 任意结构形状传感器阵方向图的最佳化[J]. 中国造船, 1984, 87(4): 78-85.

    Ma Yuan-liang. Pattern Optimisation for Sensor Arrays of Arbitrary Configuretion[J]. China Ship Building, 1984, 87(4): 78-85.
    [24] Olen C A, Compton R T J. A Numerical Pattern Synthesis Algorithm for Arrays[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(10): 1666-1676.
    [25] Capon J. High-resolution Frequency-Wavenumber Spectrum Analysis[J]. Proceeding of the IEEE, 1969, 57(8): 1408-1418.
    [26] Godara L. The Effect of Phase-Shifter Errors on the Performance of an Antenna-Array Beamformer[J]. IEEE Journal of Oceanic Engineering, 1985, 10(3): 278-284.
    [27] Kim J W, Un C K. An Adaptive Array Robust to Beam Pointing Error[J]. IEEE Transactions on Signal Processing, 1992, 40(6): 1582-1584.
    [28] Jablon N. Adaptive Beamforming with the Generalized Sidelobe Canceller in the Presence of Array Imperfections [J]. IEEE Antennas and Propagation Society, 1986, 34(8): 996-1012.
    [29] Ringelstein J, Gershman A B, Bohme J F. Direction Finding in Random Inhomogeneous Media in The Presence of Multiplicative Noise[J]. IEEE Signal Processing Letters, 2000, 7(10): 269-272.
    [30] Cox H, Zeskind R M, Owen M M. Robust Adaptive Beamforming[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(10): 1365-1376.
    [31] Liu C, Liao G. Robust Capon Beamformer under Norm Constraint[J]. Acta Electronica Sinica, 2010, 90(5): 1573-1581.
    [32] Vorobyov S A, Gershman A B, Luo Z Q. Robust Adaptive Beamforming Using Worst-Case Performance Optimiza-tion: A Solution to the Signal Mismatch Problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313-324.
    [33] Li J, Stoica P, Wang Z. Doubly Constrained Robust Capon Beamformer[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2407-2423.
    [34] Li J, Stoica P, Wang Z. On Robust Capon Beamforming and Diagonal Loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702-1715.
    [35] Stoica P, Wang Z, Li J. Robust Capon Beamforming[J]. IEEE Signal Processing Letters, 2002, 10(6): 172- 175.
    [36] Lorenz R G, Boyd S P. Robust Minimum Variance Beam-forming[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1684-1696.
    [37] Kim S J, Magnani A, Mutapcic A, et al. Robust Beam-forming Via Worst-Case SINR Maximization[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1539- 1547.
    [38] Krim H, Viberg M. Two Decades of Array Signal Processing Research: The Parametric Approach[J]. IEEE Signal Process Magazine, 1996, 13(4): 67-94.
    [39] Schmidt R O. Multiple Emitter Location and Signal Pa-rameter Estimation[J]. IEEE Transactions on Antennas & Propagation, 1986, 34(3): 276-280.
    [40] Roy R, Paulraj A, Kailath T. ESPRIT-A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1340-1342.
    [41] Roy R, Kailath T. ESPRIT-Estimation of Signal Parameters Via Rotational Invariance Techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995.
    [42] Yardibi T, Li J, Stoica P, et al. Sparsity Constrained Deconvolution Approaches for Acoustic Source Mapping[J]. Journal of the Acoustical Society of America, 2008, 123(5): 2631-2642.
    [43] Cotter S F, Rao B D, Kjersti E, et al. Sparse Solutions to Linear Inverse Problems with Multiple Measurement Vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488.
    [44] Malioutov D M. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays[D]. Cambridge, MA: Massachusetts Institute Technology, 2003.
    [45] Zheng J, Kaveh M. Sparse Spatial Spectral Estimation: A Covariance Fitting Algorithm, Performance and Regular-ization[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2767-2777.
    [46] Xenaki A, Gerstoft P, Mosegaard K. Compressive Beam-forming[J]. Journal of the Acoustical Society of America, 2014, 136(1): 260-271.
    [47] Stoica P, Babu P, Li J. Spice: A Sparse Covariance-Based Estimation Method for Array Processing[J]. IEEE Trans-actions on Signal Processing, 2011, 59(2): 629-638.
    [48] Stoica P, Babu P, Li J. New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data[J]. IEEE Transac-tions on Signal Processing, 2011, 59(1): 35-47.
    [49] Yang L, Yang Y, Wang Y. Sparse Spatial Spectral Estima-tion in Directional Noise Environment[J]. Journal of the Acoustical Society of America, 2016, 140(3): EL263- EL268.
    [50] Stoica P, Babu P. SPICE and LIKES: Two Hyperparameter-Free Methods for Sparse-Parameter Estimation[J]. Signal Processing, 2012, 92(7): 1580-1590.
    [51] Somasundaram S D. Wideband Robust Capon Beam-forming for Passive Sonar[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 308-322.
    [52] Wang H, Kaveh M. Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wide-Band Sources[J]. Acoustics Speech & Signal Processing IEEE Transactions on, 1985, 33(4): 823-831.
    [53] 鄢社锋, 马远良, 侯朝焕. 宽带波束域相干信号子空间高分辨方位估计[J]. 声学学报, 2006, 31(5): 418-424.

    Yan She-feng, Ma Yuan-liang, Hou Chao-huan. Beampattern Optimization for Sensor Arrays of Arbitrary Geometry and Element Directivity[J]. Acta Acustica, 2006, 31(5): 418-424.
    [54] Liu Z M, Huang Z T, Zhou Y Y. Direction-of-arrival Estimation of Wideband Signals via Covariance Matrix Sparse Representation[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4256-4270.
    [55] 王鲁军, 凌青, 袁延艺. 美国声呐装备和技术[M]. 北京: 国防工业出版社, 2011.
    [56] 王鲁军. 国外低频主动拖曳声呐发展现状和趋势[J]. 水下无人系统学报, 2018, 26(3): 193-199.

    Wang Lu-jun. Current Status and Developing Trend of Low Frequency Active Towed Sonar Abroad[J]. Journal of Unmanned Undersea Systems, 2018, 26(3): 193-199.
    [57] 莫喜平. 水声换能器发展中的技术创新[J]. 陕西师范大学学报(自然科学版), 2018, 46(3): 1-12..

    Mo Xi-Ping. Technical Innovations with Progress of Underwater Transducers[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2018, 46(3): 1-12.
    [58] 周利生, 胡青. 水声发射换能器技术研究综述[J]. 哈尔滨工程大学学报, 2010, 31(7): 932-937.

    Zhou Li-sheng, Hu Qing. Summarization of Underwater Acoustic Projector Technologies[J]. Journal of Harbin Engineering University, 2010, 317(7): 932-937.
    [59] 李宽. 四边型弯张换能器研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [60] 桑永杰. 低频宽带水声换能器研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [61] 张小凤. 双/多基地声呐定位及目标特性研究[D]. 西安:西北工业大学, 2003.
    [62] 凌青. 基于多站址信息综合的水下探测定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
    [63] 雷波. 水下物体声散射与前向散射信号检测[D]. 西安: 西北工业大学, 2010.
    [64] 蒋敏. 无人水下航行器舷侧MIMO阵列目标探测技术研究[D]. 西安: 西北工业大学, 2011.
    [65] 刘雄厚. 无人水下航行器舷侧MIMO阵列目标探测技术研究[D]. 西安: 西北工业大学, 2014.
    [66] 滕婷婷. 基于共址MIMO图像声呐的水下运动小目标检测跟踪技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
    [67] 孙超, 刘雄厚. MIMO声呐: 概念与技术特点探讨[J]. 声学技术, 2012, 31(2): 117-124.

    Sun Chao, Liu Xiong-hou. MIMO Sonar: Concept and Technical Characteristic Discuss[J]. Technical Acoustics, 2012, 31(2): 117-124.
    [68] Bekkerman I, Tabrikian J. Target Detection and Localization Using Mimo Radars and Sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873-3883.
    [69] Ma N. Frequency Diversity for Active Sonar/Radar Application and Optimal Receiver Design[C]// Oceans 2010 MTS/IEEE Seattle, USA: IEEE, 2010.
    [70] 李宇, 王彪, 黄海宁, 等. MIMO探测声呐研究[C]//中国声学学会2007年青年学术会议论文集(下), 郑州: 中国声学学会, 2007.
    [71] 王福钋, 李淑秋, 李宇, 等. 迭代法MIMO声呐目标检测——一种凸显弱目标的方法[J]. 应用声学, 2010, 29(1): 11-16.

    Wang Fu-bo, Li Shu-qiu, Li Yu, et al. An Iterative Way of MIMO Sonar Target Detection: A Method that Protrudes the Weak Target[J]. Applied Acoustics, 2010; 29(1): 11-16
    [72] Cai L, Ma X, Li S. On Orthogonal Waveform Design For Mimo Sonar[C]//International Conference on Intelligent Control and Information Processing, Dalian, China: IEEE, 2010: 69-72.
    [73] Huang J, Zhang L, Hou Y, et al. Modified Subspace Algorithms For DOA Estimation Using MIMO Array[C]//In- ternational Conference on Signal Processing, Beijing, China: IEEE, 2008, 195-198.
    [74] Huang J, Zhang L, Zhang Q, et al. Performance Analysis Of DOA Estimation For MIMO Sonar Based On Experiments[C]//2009 IEEE/SP 15th Workshop on Statistical Signal Processing, Cardiff, UK : IEEE, 2009: 269-272.
    [75] 刘雄厚. 密布式MIMO声呐成像技术研究[D]. 西安: 西北工业大学, 2014.
    [76] 郭小虎. 共址MIMO探测方法及实验研究[D]. 杭州: 浙江大学, 2012.
    [77] 张友文, 孙大军. MIMO声呐自适应波束形成技术研究[C]//2009年度全国物理声学会议, 西安: 中国声学学会, 2009.
    [78] 滕婷婷, 孙大军, 刘鑫, 等. 波形分集MIMO成像声呐技术研究[J]. 哈尔滨工程大学学报, 2013, 34(5): 581- 587.

    Teng Ting-ting, Sun Da-jun, Liu Xin, et al. The Techniques for Waveform Diversity MIMO Imaging Sonar[J]. Journal of Harbin Engineering University, 2013, 34(5): 581-587.
    [79] Rice J, Creber B, Fletcher C, et al. Evolution of Seaweb Underwater Acoustic Networking[C]//OCEANS 2000 MTS/ IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158), Providence, RI, USA, USA : IEEE, 2002.
    [80] 赵瑞琴, 申晓红, 姜喆. 水下信息网络基础[M]. 西安: 西北工业大学出版社, 2017.
    [81] Honegger B. Naval Postgraduate School Pioneers “Sea-web” Undersea Sensor Networks[EB/OL]. (2003-02-15) [2018-10-16]. http://www.navy.mil/submit/display.asp?st- ory_id=55235/.
    [82] Rice J. Seaweb Acoustic Communication and Navigation Networks[C]//Underwater Acoustic Measurements: Tech- nologies & Results, Heraklion, Crete, Greece, 2005.
    [83] 乔钢, 刘凇佐, 刘奇佩. 水声通信网络协议、仿真与试验综述[J]. 水下无人系统学报, 2017, 25(2): 151-160.

    Qiao Gang, Liu Song-zuo, Liu Pei-qi. Review of Protocols, Simulation and Experimentation for Underwater Acoustic Communication Network[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 151-160.
    [84] Adams A E, Acar G. An Acoustic Network Protocol for Subsea Sensor Systems[C]//Europe Oceans 2005, Brest, France: IEEE, 2005.
    [85] Acar G, Adams A E. ACMEnet: An Underwater Acoustic Sensor Network Protocol for Real-Time Environmental Monitoring in Coastal Areas[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2006, 153(4): 365-380.
    [86] CORDIS. Underwater Acoustic Network[EB/OL]. (2008- 10-01)[2018-10-16]. http://cordis.europa.eu/project/rcn/ 87609_en.html.
    [87] Sunrise: Building the Internet of Underwater Things [EB/OL]. (2013-01-01)[2018-10-16]. http://fp7-sun¬-rise.e u/index.php.
    [88] Alves J, Potter J, Guerrini P, et al. The Loon in 2014: Test Bed Description[C]//2014 Underwater Communications and Networking, Sestri Levante, Italy: IEEE, 2015.
    [89] Martins R, Borges de Sousa J, Caldas R, et al. Sunrise Project: Porto University Testbed[C]//2014 Underwater Communications and Networking, Sestri Levante, Italy: IEEE, 2015.
    [90] RAWFIE. Road-, Air-, And Water- Based Future Internet Experimentation[EB/OL]. (2017-12-01)[2018-10-16]. http: //www. rawfie.eu/
    [91] Real-Arce D, Morales T, Barrera C, et al. Smart and Net-working Underwater Robots in Cooperation Meshes: the Swarms Ecsel: H2020 Project[C]//7th International Work- shop on Marine Technology: MARTECH, 2016: 19.
    [92] SWARMs. Smart and Networking Underwater Robots in Cooperation Meshes[EB/OL]. (2015-07-01)[2018-10-16]. http://www.swarms.eu/overview.html.
    [93] 许肖梅. 水声通信与水声网络的发展与应用[J]. 声学技术, 2009, 28(6): 811-816.

    Xu Xiao-mei. Development and Application of Underwater Acoustic Communication and Networks[J]. Technical Acoustics, 2009, 28(6): 811-816
    [94] 郭忠文, 罗汉江, 洪锋, 等. 水下无线传感器网络的研究进展[J]. 计算机研究与发展, 2010, 47(3): 377-389.

    Guo Zhong-wen, Luo Han-jiang, Hong Feng, et al. Current Progress and Research Issues in Underwater Sensor Networks[J]. Journal of Computer Research and Devel-opment, 2010, 47(3): 377-389.
    [95] Li B, Wang H, Shen X, et al. Deep-water Riser Fatigue Monitoring Systems Based on Acoustic Telemetry[J]. Journal of Ocean University of China, 2014, 13(6): 951- 956.
    [96] 秦川. 光纤布拉格光栅传感解调技术及应用研究[D]. 西安: 西北工业大学, 2015.
    [97] 李保军. 海洋管线涡激振动监测关键技术研究[D]. 西安: 西北工业大学, 2015.
    [98] 白卫岗. 水声通信网络组网协议关键技术研究[D]. 西安: 西北工业大学, 2018.
    [99] Gao J, Shen X, Zhao R, et al. A Double Rate Localization Algorithm with One Anchor for Multi-Hop Underwater Acoustic Networks[J]. Sensors, 2017, 17(5): 984.
    [100] 哈尔滨工程大学水声通信与网络实验室. OFDM水声通信网络[EB/OL]. (2017-11-20)[2018-10-16]. http://uacan. hrbeu.edu.cn/1598/list.htm.
    [101] 房栋, 李宇, 尹力, 等. 水声传感器网络MAC协议研究与实现[C]//全国水声学学术交流暨水声学分会换届改选会议. 大连: 中国声学学会水声学分会委员会, 2009.
    [102] 刘旬, 李宇, 张春华, 等. 水下自组织网络AODV协议研究与应用[C]//全国水声学学术交流暨水声学分会换届改选会议. 大连: 中国声学学会水声学分会委员会, 2009.
    [103] 熊省军, 周士弘. 水声Modem混合自动重传试验研究[J]. 声学与电子工程, 2010(4): 30-33.

    Xiong Sheng-jun, Zhou Shi-hong. Experimental study of Automatic Retransmission for Underwater Acoustic Modem[J]. Acoustics and Eletronic Engineering, 2010(4): 30-33.
    [104] Been R, Jespers S, Croaluppi S, et al. Multistatic Sonar: A Road to a Maritime Network Enabled Capability[C]//in Undersea Defence Technology Europe, La Spezia, Italy, 2007.
    [105] Georgescu R, Willett P, Marano S, et al. Predetection Fu-sion in Large Sensor Networks with Un-Known Target Locations[J]. ISIF Journal of Advances in Information Fusion, 2012, 7(1): 61-77.
    [106] Coraluppi S, Grimmett D, Theije P D. Benchmark Evaluation of Multistatic Trackers[C]//2006 9th International Conference on Information Fusion, Florence, Italy: IEEE, 2007: 1-7.
    [107] Chair Z, Varshney P K. Optimal Data Fusion In Multiple Sensor Detection Systems[J]. IEEE Transactions on Aerospace & Electronic Systems, 2007, AES-22(1): 98-101.
    [108] Reibman A R, Nolte L W. Optimal Detection and Perfor-mance of Distributed Sensor Systems[J]. Aerospace & Electronic Systems IEEE Transactions on, 2000, AES- 23(1): 24-30.
    [109] Tenney R R, Sandell N R. Detection with Distributed Sensors[J]. Aerospace & Electronic Systems IEEE Transactions on, 1981, AES-17(4): 501-510.
    [110] Tsitsiklis J N. Decentralized Detection[J]. Advances in Statistical Signal Processing, 1993(2): 297-344.
    [111] Tsitsiklis J N. Extremal Properties of Likelihood-Ratio Quantizers[J]. IEEE Transactions on Communications, 1989, 41(4): 550-558.
    [112] Warren D, Willett P. Optimum Quantization for Detector Fusion: Some Proofs, Examples, and Pathology[J]. Journal of the Franklin Institute, 1999, 336(2): 323-359.
    [113] Theije P A M D, Moll C A M V. An Algorithm for the Fu-sion of Two Sets of (Sonar) Data[C]//Europe Oceans 2005, Brest, France: IEEE, 2005.
    [114] Theije P A M D, Moll C A M V, Ainslie M A. The De-pendence of Fusion Gain on Signal-Amplitude Distribu-tions and Position Errors[J]. IEEE Journal of Oceanic Engineering, 2009, 33(3): 266-277.
    [115] Krout D W, Morrison D. PDAFAI vs. PDAFAIwTS: TNO Blind Dataset and SEABAR’07[C]//2009 12th International Conference on Information Fusion, Seattle, WA, USA: IEEE, 2009: 1845-1850.
    [116] Krout D W, Hanusa E. Likelihood Surface Preprocessing with the JPDA Algorithm: Metron Data Set[C]//2010 13th International Conference on Information Fusion, Edin-burgh, UK: IEEE, 2011: 1-7.
    [117] Coraluppi S, Carthel C. Multi-stage Data Fusion and the MSTWG TNO Datasets[C]//2009 12th International Con- ference on Information Fusion, Seattle, WA, USA: IEEE, 2009: 1552-1559.
    [118] Guerriero M. Statistical signal Processing in Sensor Networks[D]. CT: University of Connecticut, 2009.
    [119] Guerriero M, Coraluppi S, Willett P. Analysis of Scan and Batch Processing Approaches to Static Fusion in Sensor Networks[C]//SPIE Defense and Security Symposium, Orlando, Florida, United States: SPIE, 2008.
    [120] Georgescu R, Willett P. Random Finite Set Markov Chain Monte Carlo Predetection Fusion[C]//14th International Conference on Information Fusion, Chicago, IL, USA: IEEE, 2011: 1-8.
    [121] 李嶷, 李启虎, 孙长瑜. 多基地声呐定位误差最小的模板法[J]. 系统仿真学报, 2011, 23(11): 2465-2470.

    Li Yi, Li Qi-hu, Sun Chang-yu. Deployment Algorithm of Multistatic Sonar Based on Minimum Localization Error[J]. Journal of System Simulation, 2011, 23(11): 2465- 2470.
    [122] 白士君, 凌国民. 水声网络探测节点的一种运动目标参数估计算法[J]. 舰船电子工程, 2010, 30(5): 186-189.

    Bai Shi-jun, Ling Guo-min. A Moving Target Parameters Estimation Algorithm Used FRO Underwater Acoustic Networks Detection Nodes[J]. Ship Electronic Engineer-ing, 2010, 30(5): 186-189.
    [123] 谷秀明, 李博. 声呐信息融合技术研究[J]. 科技资讯, 2011(3): 6.

    Gu Xiu-ming, Li Bo. On Sonar Information Fusion Technolugy[J]. Science & Technology Information, 2011(3): 6.
    [124] 张宁. 水声目标的多阵声呐信息综合识别技术研究[D]. 南京: 东南大学, 2008.
    [125] 金惠明, 李建勋. 反潜直升机吊放声呐搜潜策略分析[J]. 电光与控制, 2011, 18(8): 26-28.

    Jin Hui-ming, Li Jian-xun. Submarine Searching Strategies for Dipping Sonar on Antisubmariine Helicopter[J]. Electronics Optics & Control, 2011, 18(8): 26-28.
    [126] 邹吉武. 多基地声呐关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [127] 刘若辰, 王英民, 张群. 基于线性最小二乘估计的双基地声呐定位优化算法[J]. 鱼雷技术, 2011, 19(6): 428-432.

    Liu Ruo-chen, Wang Ying-min, Zhang Qun. Optimum Localization Algorithm Based on the Linear Least Squares Estimate for Bistatic Sonar[J]. Torpedo Tech-nology, 2011, 19(6): 428-432.
    [128] 韩崇昭, 朱洪艳, 段战胜, 等. 多源信息融合[M]. 北京: 清华大学出版社, 2010.
    [129] 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010, 16-20.
    [130] 敬忠良, 肖刚, 李振华. 图像融合: 理论与应用[M]. 北京: 高等教育出版社, 2007.
    [131] 潘泉, 程咏梅, 梁彦, 等. 信息融合理论及应用[M]. 北京: 清华大学出版社, 2012.
    [132] Thode A M, Kuperman W A, D’Spain G L, et al. Localization Using Bartlett Matched-Field Processor Sidelobes[J]. Journal of the Acoustical Society of America, 1999, 107(1): 278-286.
    [133] Ma Y, Yan S, Yang K. Matched Field Noise Suppression: Principle With Application To Towed Hydrophone Line Array[J]. Chinese Science Bulletin, 2003, 48(12): 1207- 1211.
    [134] Yan S F, Ma Y L. Matched Field Noise Suppression: A Generalized Spatial Filtering Approach[J]. Chinese Science Bulletin, 2004, 49(20): 2220-2223.
    [135] Finette S, Mignerey P C. Stochastic Matched-Field Localization of an Acoustic Source Based on Principles of Riemannian Geometry[J]. Journal of the Acoustical Society of America, 2018, 143(6): 3628-3638.
    [136] Fink M. An Overview of Time Reversal Acoustics[J]. Journal of the Acoustical Society of America, 2008, 123(5): 3183-3183.
    [137] Montaldo G, Tanter M, Fink M. Revisiting Iterative Time Reversal Processing: Application to Detection of Multiple Targets[J]. Journal of the Acoustical Society of America, 2004, 115(2): 776-784.
    [138] Walker S C, Roux P, Kuperman W A. Synchronized Time-Reversal Focusing with Application to Remote Imaging from a Distant Virtual Source Array[J]. Journal of the Acoustical Society of America, 2009, 125(6): 3828- 3834.
    [139] Kim J, Douglass A, Choi P, et al. Blind Deconvolution of Simple Communication Signals Recorded in Laboratory Water Tank[J]. Journal of the Acoustical Society of America, 2015, 137(4): 2212-2212.
    [140] Shimura T, Watanabe Y, Ochi H, et al. Long-range Time Reversal Communication in Deep Water: Experimental Results[J]. Journal of the Acoustical Soci-ety of America, 2012, 132(1): EL49-EL53.
    [141] Song H C. Time Reversal Communication with a Mobile Source[J]. Journal of the Acoustical Society of America, 2013, 134(4): 2623-2626.
    [142] Tiemann C O, Thode A M, Straley J, et al. Three-dimensional Localization of Sperm Whales Using a Single Hydrophone[J]. Journal of the Acoustical Society of America, 2006, 120(4): 2355-2365.
    [143] 段睿. 深海环境水声传播及声源定位方法研究[D]. 西安: 西北工业大学, 2016.
    [144] Gervaise C, Kinda B G, Bonnel J, et al. Passive Geoacoustic Inversion with a Single Hydrophone Using Broadband Ship Noise[J]. Journal of the Acoustical Society of America, 2012, 131(3): 1999-2010.
    [145] McCargar R, Zurk L. M. Depth-based Signal Separation with Vertical Line Arrays in the Deep Ocean[J]. Journal of the Acoustical Society of America, 2013, 133(4): EL320-EL325.
  • 加载中
计量
  • 文章访问数:  2180
  • HTML全文浏览量:  8
  • PDF下载量:  4699
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 修回日期:  2018-10-17
  • 刊出日期:  2018-10-31

目录

    /

    返回文章
    返回
    服务号
    订阅号