• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

管内小药量水下爆炸平面冲击波形成方法及其应用

徐维铮 黄宇 李业勋 赵宏涛 郑贤旭

徐维铮, 黄宇, 李业勋, 等. 管内小药量水下爆炸平面冲击波形成方法及其应用[J]. 水下无人系统学报, 2022, 30(3): 405-412 doi: 10.11993/j.issn.1673-1948.2022.03.018
引用本文: 徐维铮, 黄宇, 李业勋, 等. 管内小药量水下爆炸平面冲击波形成方法及其应用[J]. 水下无人系统学报, 2022, 30(3): 405-412 doi: 10.11993/j.issn.1673-1948.2022.03.018
XU Wei-zheng, HUANG Yu, LI Ye-xun, ZHAO Hong-tao, ZHENG Xian-xu. Formation Method of Planar Shock Waves in Underwater Explosions Using Small Charges inside a Tube and Its Applications[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 405-412. doi: 10.11993/j.issn.1673-1948.2022.03.018
Citation: XU Wei-zheng, HUANG Yu, LI Ye-xun, ZHAO Hong-tao, ZHENG Xian-xu. Formation Method of Planar Shock Waves in Underwater Explosions Using Small Charges inside a Tube and Its Applications[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 405-412. doi: 10.11993/j.issn.1673-1948.2022.03.018

管内小药量水下爆炸平面冲击波形成方法及其应用

doi: 10.11993/j.issn.1673-1948.2022.03.018
基金项目: 中国工程物理研究院培育基金(PY20200003); 装备预先研究领域基金(80928010101)
详细信息
    作者简介:

    徐维铮(1991-), 男, 博士, 主要研究方向为水下爆炸毁伤

  • 中图分类号: TJ55; U662.3

Formation Method of Planar Shock Waves in Underwater Explosions Using Small Charges inside a Tube and Its Applications

  • 摘要: 水下爆炸过程中存在冲击波、气泡、冲击波绕射等多种效应的耦合, 给水下爆炸毁伤机理的研究带来了一定难度。为了对上述多种效应进行解耦, 文中提出一种管内小药量水下爆炸平面冲击波形成方法, 采用数值仿真和理论分析对管内水下爆炸平面冲击波的衰减规律进行了研究。研究结果表明: 在管道端部放置装药配合端面起爆, 可在管内形成指数衰减形式的平面冲击波; 理论模型与数值计算结果吻合较好, 可给出冲击波超压峰值随距离的衰减关系, 以及不同时刻冲击波的阵面位置。最后给出了该试验方法在水下爆炸加载典型结构件毁伤效应和流固耦合作用机理研究的应用场景。研究成果可为水下爆炸毁伤评估提供参考。

     

  • 图  1  锥形激波管原理和实物图

    Figure  1.  Principle of conical shock tube and on-site picture

    图  2  非药式水下爆炸冲击加载装置示意图

    Figure  2.  Schematic diagram of non-explosive underwater shock loading device

    图  3  计算域图

    Figure  3.  Computational domain

    图  4  典型时刻压力计算云图(H0=5 mm, 装药在管内)

    Figure  4.  Computational contour of pressure at typical times with explosives inside the tube(H0=5 mm)

    图  5  典型时刻压力计算云图(H0=5 mm装药在管外)

    Figure  5.  Computational contour of pressure at typical times with explosives outside the tube(H0=5 mm)

    图  6  典型测点位置超压时间历程曲线(H0=5 mm, 装药在管内)

    Figure  6.  Time-history curves of overpressure at typical locations with explosives inside the tube(H0=5 mm)

    图  7  典型测点位置超压时间历程曲线(H0=5 mm 装药在管外)

    Figure  7.  Time-history curves of overpressure at typical locations with explosives outside the tube(H0=5 mm)

    图  8  不同无量纲比值H/H0超压峰值数值与理论对比曲线(装药在管内)

    Figure  8.  Curves of numerical and theoretical overpressure at different values of H/H0 with explosives inside the tube

    图  9  不同无量纲比值H/H0超压峰值数值与理论对比曲线(装药在管外)

    Figure  9.  Curves of numerical and theoretical overpressure at different values of H/H0 with explosives outside the tube

    图  10  冲击波阵面位置随时间变化关系数值与理论对比曲线(装药在管内)

    Figure  10.  Curves of numerical and theoretical locations of shock waves at different time with explosives inside the tube

    图  11  冲击波阵面位置随时间变化关系数值与理论对比曲线(装药在管外)

    Figure  11.  Curves between numerical and theoretical locations of shock waves at different time with explosives outside the tube

    图  12  单点中心起爆冲击波传播云图

    Figure  12.  Computational contours of shock waves at different times using single point initiation

    图  13  多点起爆冲击波传播云图

    Figure  13.  Computational contours of shock waves at different times using multi-point initiation

    图  14  典型复合材料构件加载示意图

    Figure  14.  Schematic diagram of loading typical composite components

    图  15  冲击波与典型结构件耦合作用机理试验示意图

    Figure  15.  Schematic diagram of shock waves coupling with typical structures

    图  16  冲击波与结构物相互作用示意图

    Figure  16.  Schematic diagram of shock waves interacting with structures

    表  1  水的材料参数

    Table  1.   Material parameters of water

    参数名称参数数值参数名称参数数值
    A1/GPa 2.200 B1 0.28
    A2/GPa 9.540 T1/GPa 2.200
    A3/GPa 14.570 T2/GPa 0.000
    B0 0.28 ρ0/(g·cm−3) 1.00
    下载: 导出CSV

    表  2  TNT炸药的材料参数

    Table  2.   Material parameters of TNT

    参数名称参数数值参数名称参数数值
    A/GPa 371.200 w 0.30
    B/GPa 3.231 pCJ/GPa 21.000
    R1 4.15 DCJ/(m·s−1) 6 930
    R2 0.95 ρe/(g·cm−3) 1.63
    下载: 导出CSV
  • [1] 郑监, 卢芳云, 李翔宇. 金属板在水下爆炸加载下的动态响应研究进展[J]. 中国测试, 2018, 44(10): 20-30.

    Zheng Jian, Lu Fang-yun, Li Xiang-yu. Research Progress on Dynamic Response of Metal Plate in Underwater Explosion Loading[J]. China Measurement & Test, 2018, 44(10): 20-30.
    [2] Filler W S. Propagation of Shock Waves in a Hydrodynamic Conical Shock Tube[J]. Physics of Fluids, 1964, 7(5): 664-667. doi: 10.1063/1.1711266
    [3] Coombs A, Thornhill C K. An Underwater Explosive Shock Gun[J]. Journal of Fluid Mechanics, 1967, 29(2): 373-383. doi: 10.1017/S0022112067000886
    [4] Zalesak J F, Poche L B. The Shock Test Facility: An Explosive-driven, Water-filled Conical Shock Tube[C]//60th Shock and Vibration Symposium. The United States: The Acoustical Society of America, 1989.
    [5] Heshmati M, Zamani J, Mozafari A. The Experimental and Numerical Impacts of Geometrical Parameters of Conical Shock Tube on the Function, Maximum Pressure and Generative Impulses to Expose Equivalent Mass and Behavioral Equation[J]. Materialwissenschaft Und Werkstofftechnik, 2016, 47(7): 623-634. doi: 10.1002/mawe.201600510
    [6] Heshmati M, Zamani A J, Mozafari A. Experimental and Numerical Study of Isotropic Circular Plates ’ Response to Underwater Explosive Loading, Created by Conic Shock Tube[J]. Materialwissenschaft Und Werkstofftechnik, 2017, 48(2): 106-121. doi: 10.1002/mawe.201600578
    [7] Leblanc J, Shukla A. Dynamic Response of Curved Composite Panels to Underwater Explosive Loading: Experimental and Computational Comparisons[J]. Composite Structures, 2011, 93(11): 3072-3081. doi: 10.1016/j.compstruct.2011.04.017
    [8] Leblanc J, Shukla A. Response of E-glass/vinyl Ester Composite Panels to Underwater Explosive Loading: Effects of Laminate Modifications[J]. International Journal of Impact Engineering, 2011, 38(10): 796-803. doi: 10.1016/j.ijimpeng.2011.05.004
    [9] Leblanc J, Gardner N, Shukla A. Effect of Polyurea Coatings on the Response of Curved E-Glass/Vinyl Ester Composite Panels to Underwater Explosive Loading[J]. Composites Part B Engineering, 2013, 44(1): 565-574. doi: 10.1016/j.compositesb.2012.02.038
    [10] Deshpande V S, Heaver A, Fleck N A. An Underwater Shock Simulator[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021-1041. doi: 10.1098/rspa.2005.1604
    [11] Espinosa H D, Lee S, Moldovan N. A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading[J]. Experimental Mechanics, 2006, 46(6): 805-824. doi: 10.1007/s11340-006-0296-7
    [12] 项大林, 荣吉利, 何轩, 等. 等效水下爆炸冲击加载装置的设计研究[J]. 兵工学报, 2014, 35(6): 857-863.

    Xiang Da-lin, Rong Ji-li, He Xuan, et al. Development of an Equivalent Equipment on Underwater Explosion Impulsive Loading[J]. Acta Armamentarii, 2014, 35(6): 857-863.
    [13] 任鹏, 张伟, 黄威, 等. 非药式水下爆炸冲击波加载装置研究[J]. 爆炸与冲击, 2014, 34(3): 334-339. doi: 10.11883/1001-1455(2014)03-0334-06

    Ren Peng, Zhang Wei, Huang Wei, et al. Research on Non-explosive Underwater Shock Loading Device[J]. Explosion and Shock Waves, 2014, 34(3): 334-339. doi: 10.11883/1001-1455(2014)03-0334-06
    [14] 杨一方, 郭锐, 刘萌萌, 等. 一种新型水下爆炸冲击等效加载实验方法[J]. 鱼雷技术, 2014, 22(5): 357-360.

    Yang Yi-fang, Guo Rui, Liu Meng-meng, et al. An Equivalent Loading Method for Underwater Explosion Impact Experiment[J]. Torpedo Technology, 2014, 22(5): 357-360.
    [15] 项大林, 荣吉利, 何轩, 等. 基于三维数字图像相关方法的水下冲击载荷作用下铝板动力学响应研究[J]. 兵工学报, 2014, 35(8): 1210-1217. doi: 10.3969/j.issn.1000-1093.2014.08.012

    Xiang Da-lin, Rong Ji-li, He Xuan, et al. Dynamics Analysis of AL Plate Subjected to Underwater Impulsive Loads Based on 3D DIC[J]. Acta Armamentarii, 2014, 35(8): 1210-1217. doi: 10.3969/j.issn.1000-1093.2014.08.012
    [16] 任鹏, 田阿利, 张伟, 等. 水下冲击波载荷作用下气背固支圆板动态毁伤实验[J]. 爆炸与冲击, 2016, 36(5): 617-624. doi: 10.11883/1001-1455(2016)05-0617-08

    Ren Peng, Tian A-li, Zhang Wei, et al. Failure Mode of Clamped Air-back Circular Panel Subjected to Underwater Shock Loading[J]. Explosion and Shock Waves, 2016, 36(5): 617-624. doi: 10.11883/1001-1455(2016)05-0617-08
    [17] 任鹏, 张伟, 刘建华, 等. 水下冲击波作用的铝合金蜂窝夹层板动力学响应研究[J]. 振动与冲击, 2016, 35(2): 7-11.

    Ren Peng, Zhang Wei, Liu Jian-hua, et al. Dynamic Analysis of Aluminium Alloy Honeycomb Core Sandwich Panels Subjected to Underwater Shock Loading[J]. Journal of Vibration and Shock, 2016, 35(2): 7-11.
    [18] SINGH V P, MADAN A K, SUNEJA H R,等. Propagation of spherical shock waves in water[J]. Sadhana, 1980. 3(2): 169-175.

    Singh V P, Madan A K, Suneja H R, et al. Propagation of Spherical Shock Waves in Water[J]. Sadhana, 1980, 3(2): 169-175.
    [19] 安丰江, 吴成, 王宁飞. 水下爆炸能量耗散特性分析研究[J]. 北京理工大学学报, 2011, 31(4): 379-382.

    An Feng-jiang, Wu Cheng, Wang Ning-fei. A Research on the Energy Dissipation of Underwater Explosion[J]. Transactions of Beijing Institute of Technology, 2011, 31(4): 379-382.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  20
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-03-18
  • 录用日期:  2022-05-06
  • 网络出版日期:  2022-07-18

目录

    /

    返回文章
    返回
    服务号
    订阅号