• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于HMG法的被动声呐浅海探测距离预报

高 飞 潘长明 李胜全 孙 磊 陈符森

高 飞, 潘长明, 李胜全, 孙 磊, 陈符森. 基于HMG法的被动声呐浅海探测距离预报[J]. 水下无人系统学报, 2016, 24(3): 177-183. doi: 10.11993/j.issn.1673-1948.2016.03.004
引用本文: 高 飞, 潘长明, 李胜全, 孙 磊, 陈符森. 基于HMG法的被动声呐浅海探测距离预报[J]. 水下无人系统学报, 2016, 24(3): 177-183. doi: 10.11993/j.issn.1673-1948.2016.03.004
GAO Fei, PAN Chang-ming, LI Sheng-quan, SUN Lei, CHEN Fu-sen. Detection Range Prediction of Passive Sonar in Shallow-water Area Based on the HMG Method[J]. Journal of Unmanned Undersea Systems, 2016, 24(3): 177-183. doi: 10.11993/j.issn.1673-1948.2016.03.004
Citation: GAO Fei, PAN Chang-ming, LI Sheng-quan, SUN Lei, CHEN Fu-sen. Detection Range Prediction of Passive Sonar in Shallow-water Area Based on the HMG Method[J]. Journal of Unmanned Undersea Systems, 2016, 24(3): 177-183. doi: 10.11993/j.issn.1673-1948.2016.03.004

基于HMG法的被动声呐浅海探测距离预报

doi: 10.11993/j.issn.1673-1948.2016.03.004
基金项目: 国家自然科学基金项目(41276088); 国家海洋公益性行业科研项目(2012050007-7)
详细信息
  • 中图分类号: TJ630.34; P733.23

Detection Range Prediction of Passive Sonar in Shallow-water Area Based on the HMG Method

  • 摘要: 基于HMG法并将实测数据与模型仿真相结合, 以评估海洋“水声环境效应”对声呐探测距离的影响。文章首先基于声呐方程阐述HMG法预报原理, 给出其声呐参数组合表达式; 然后结合东海浅水区域水声调查构建海洋环境背景场, 分析其水体及边界声学参数分布; 最后, 利用实测数据验证Kraken水声传播数值模型及风生噪声经验模型, 并根据HMG法模拟预报海面风速、声速剖面对被动声呐探测距离的影响。研究结果表明: HMG法可较好模拟“水声环境效应”对声呐探测距离的影响; 传播损失和环境噪声随海面风速增加而增大, 从而降低了声呐探测距离; 声速剖面通过影响声能边界损失作用于探测距离, 垂向均匀的声速剖面环境中探测距离最大。文中研究可为被动声呐水下探测及水下航行器的隐蔽航行研究提供参考。

     

  • [1] 笪良龙. 海洋水声环境效应建模与应用[M]. 北京: 科学出报社, 2012: 1-2.
    [2] Harry D F. Predicting Sonar Performance Using Observations of Mesoscale Eddies[J]. Journal of the Acoustical Society of America, 2006, 120(2): 3060-3069.
    [3] 秦继兴, 张仁和, 骆文于, 等. 大陆坡海域二维声传播研究[J]. 声学学报, 2014, 39(2): 145-153.

    Qian Ji-xing, Zhang Ren-he, Luo wen-yu, et al. Two Dimensional Sound Propagation over a Continental Slope[J]. Acta Acustica, 2014, 39(2): 145-153.
    [4] 高飞, 张新睿, 孙磊, 等. 白令海西部小区域声传播特征研究[J]. 声学技术, 2015, 34(4): 306-311.

    Gao Fei, Zhang Xin-rui, Sun Lei, et al. The Analysis of Acoustic Propagation Characteristics in the Small Area West of Bering Sea[J]. Technical Acoustics, 2015, 34(4): 306-311.
    [5] 于源, 鄢社锋, 侯朝焕. 混响背景下主动探测声纳性能预报[J]. 鱼雷技术, 2011, 19(3): 192-194.

    Yu Yuan, Yan She-feng, Hou Chao-huan. Performance Prediction of Active Sonar Under Reverberation[J]. Torpedo Technology, 2011, 19(3): 192-194.
    [6] David R B, Michael J B. Depth Dependence of Wind-driven, Broadband Ambient Noise in the Philippine Sea[J]. Journal of the Acoustical Society of America, 2013, 133(1): 62-71.
    [7] Bernard C, James D, William L, et al. Coherent Bottom Reverberation: Modeling and Comparisons with At-sea Measurements[J]. Journal of the Acoustical Society of America, 2004, 116(4): 1985-1994.
    [8] 李胜全, 李宏武, 高飞, 等. 主动声纳探测效能评估的HMG法[J]. 海洋测绘, 2015, 35(3): 67-70.

    Li Sheng-quan, Li Hong-wu, Gao Fei, et al. HMG Method for Evaluation Active Sonar Detection Efficiency[J]. Hydrographic Surveying and Charting, 2015, 35(3): 67-70.
    [9] Mellerg L E, Robinson A R, Botseas G. Modeled Time Variability of Acoustic Propagation Through a Gulf Stream Mender and Eddies[J]. Journal of the Acoustical Society of America, 1990, 87(3): 1044-1054.
    [10] Alexey A S, James F L, Lin Y T. Three-dimensional Coupled Mode Analysis of Internal-wave Acoustic Ducts[J]. Journal of the Acoustical Society of America, 2014, 135(5): 2497-2512.
    [11] Martin S, MichaelI B P, Paul H, et al. Effects of Ocean Thermocline Variability on Nonecoherent Underwater Acoustic Communications[J]. Journal of the Acoustical Society of America, 2007, 12(4): 1895-1908.
    [12] 潘长明, 高飞, 孙磊, 等. 浅海温跃层对水声传播损失场的影响[J]. 哈尔滨工程大学学报, 2014, 35(4): 312- 318.

    Pan Chang-ming, Gao Fei, Sun Lei, et al. The Effects of Shallow Water Thermocline on Water Acoustic Transmission Loss[J]. Journal of Harbin Engineering University, 2014, 35(4): 312-318.
    [13] 程广利, 张明敏. 浅海不确定声场的随机多项式展开法研究[J]. 声学学报, 2013, 38(3): 294-299.

    Cheng Guang-li, Zhang Ming-min. On Polynomial Chaos Expansion Method for the Method for the Uncertain Acoustic Field in Shallow Water[J]. Acta Acustical, 2013, 38(3): 294-299.
    [14] Laurie T F, Michael D C, John S P. Source Localization in Noisy and Uncertain Ocean Environment[J]. Journal of the Acoustical Society of America, 1997, 101(6): 3593- 3599.
    [15] Lin J H, Gao T F. Model of Wind-generated Ambient Noise in Stratified Shallow Water[J]. Chinese Journal of Oceanology Limnology, 2005, 23(2): 144 -151.
    [16] MichaelI J B. Theory of the Directionality and Spatial Coherence of Wind-driven Ambient Noise in a Deep Ocean with Attenuation[J]. Journal of the Acoustical Society of America, 2013, 134(2): 950 -958.
    [17] 过武宏, 笪良龙, 赵建昕. 地声参数及传播损失不确定性估计与建模[J]. 应用声学, 2015, 34(1): 71-78.

    Guo Wu-hong, Da Liang-long, Zhao Jian-xin. Estimation and Modeling of Geoacoustic Parameters and Transmission Loss Uncertainty[J]. Journal of Applied Acosutics, 2015, 34(1): 71-78.
    [18] Tapper F S, Spiesberger J L, Wolfson M A. Study of a Novel Range-Dependent Propagation Effect with Application to the Axial Injection of Signals from the Kaneohe Source[J]. Journal of the Acoustical Society of America, 2002, 111(2): 757-762.
    [19] 袁骏, 张明敏, 肖卉. 双基地声纳海底界面侧向散射分析与仿真[J]. 火力与指挥控制, 2010, 35(7): 133-138.

    Yuan Jun, Zhang Ming-min, Xiao Hui. Analysis and Simulation of Bistatic Sonar Seafloor Interface Side E-Scattering[J]. Fire Control & Command Control, 2010, 35(7): 133-138.
    [20] Alec J D, Robert D M, Amos L M. Predicting the Environment Impact of Active Sonar[J]. AIP Conference Proceedings, 2004, 728: 280-287.
    [21] Paul B, Jeffery K, Shawn K. Adaptive Sonar Detection Performance Prediction in an Uncertain Ocean[J]. Journal of the Acoustical Society of America, 2003, 113(1): 2253-2263.
    [22] Sha L W, Loren W N. Effects of Environmental Uncertainties on Sonar Detection Performance Prediction[J]. Journal of the Acoustical Society of America, 2005, 117(4): 1942-1953.
    [23] Fan L, Guo S M, Chen Y M. Sonar Detection Range Index Estimation Approach in Uncertain Environments[J]. AIP Conference Proceeding, 2010, 1272: 375-382.
    [24] 李玉伟, 姜可宇, 黄建波. 探雷声纳水雷发现概率仿真研究[J]. 声学技术, 2015, 31(5): 505-509.

    Li Yu-wei, Jiang Ke-yu, Huang Jian-bo. Simulation Research on the Detection Probability of Mine-detection Sonar[J]. Technical Acoustics, 2015, 31(5): 505-509.
    [25] 岳雷. 线性调频脉冲串信号及其检测性能分析[J]. 鱼雷技术, 2015, 23(4): 285-290.

    Yue Lei. Pulse Trains of Linear Frequency-modulated Signal and Its Detection Performance[J]. Torpedo Technology, 2015, 23(4): 285-290.
    [26] 赵志允, 孙明太, 任东彦. 吊放声纳主动工作方式探测域建模与仿真[J]. 指挥控制与仿真, 2013, 35(6): 49-54.

    Zhao Zhi-yun, Sun Ming-tai, Ren Dong-yan. Modeling and Simulation of Dipping Sonar Active Detection Tegion[J]. Command Control & Simulation, 2013, 35(6): 49-54.
    [27] He X Y, Cai Z M, Lin J Y, et al. The Simulation Research on Forecasting the Detection Range of Active Sonar[J]. Journal of System Simulation, 2003, 15(9): 1304-1308.
    [28] 杨小小, 綦辉, 陈磊. 基于改进ADC法的潜艇反潜作战方案效能评估[J]. 海军航空工程学院学报, 2014, 29(3): 285-292.
    [29] 戴明强, 李旺, 项浩. 改进蚁群算法在潜艇规避机载声纳探测的路径优化应用[J]. 兵工自动化, 2010, 29(9): 9-14.

    Dai Ming-qiang, Li Wang, Xiang Hao. Application of Improved Ant Colony Algorithm in Path Optimization of Submarine Evading Search Dipping Sonar on Aircraft[J]. Ordnance Industry Automation, 2010, 29(9): 9-14.
    [30] Urick R J. Principles of Underwater Sound(Third Edition) [M]. Los Altos, California, USA: Peninsula Pub, 1983: 104-114.
    [31] Ainslie M A. Principles of Sonar Performance Modeling [M]. Berlin: Springer & Chichester: Praxis, 2010: 53-122.
    [32] 高飞, 潘长明, 孙磊, 等. 温跃层及其变化对被动声纳检测概率的影响[J]. 应用声学, 2014, 33(2): 138-144.

    Gao Fei, Pan Chang-ming, Sun Lei, et al. The Effects of Thermocline and Its Variability on the Detection Probability of Passive Sonar[J]. Journal of Applied Acoustics, 2014, 33(2): 138-144.
    [33] Akima H.A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures[J]. Journal of Association Computer Mathematics, 1970, 17(4): 589- 602.
    [34] Teague W J, Carron M J, Hogan P J. A Comparison Between the Generalized Digital Environmental Model and Levitus Climatologies[J]. Journal of Geophysical Research, 1990, 95: 7167-7183.
    [35] Porter M B, Reiss E L. A Numerical Method for Ocean-acoustic Normal Modes[J]. Journal of the Acoustical Society of America, 1984, 76(1): 244-252.
    [36] Wu H. Wind Stress and Surface Roughness at Air-sea Interface[J]. Geographical Reasearch, 1969, 21(5): 707-714.
    [37] 周艳莲, 孙晓敏, 朱治林, 等. 几种典型地表粗糙度计算方法与比较[J]. 地理研究, 2007, 26(5): 887-896.

    Zhou Yan-lian, Sun Xiao-min, Zhu Zhi-lin, et al. Comparative Research on Four Typical Surface Roughness Length Calculation Methods[J]. Geographical Research, 2007, 26(5): 887-896.
    [38] 刘伯胜, 雷家煜. 水声学原理[M]. 第2版. 哈尔滨: 哈尔滨工程大学出版社, 2010: 248-249.
    [39] Martin S, MichaelI J B. Thirty Years of Progress in Application and Modeling of Ocean Ambient Noise[C]//AIP Conference Proceedings. Beijing, China, 2012: 261-272.
    [40] Hamson R M. The Modelling of Ambient Noise Due to Shipping and Wind Sources in Complex Environments[J]. Applied Acoustics, 1997, 51(3): 251-287.
    [41] 李整林, 彭朝晖, 何利. 海洋环境噪声源级经验公式修正[J]. 声学技术, 2010, 29(6): 36-37.

    Li Zheng-lin, Peng Chao-hui, He Li. Modification for the Empirical Relationship of Ambient Noise Source Level in Shallow Water[J]. Technical Acoustics, 2010, 29(6): 36- 37.
    [42] 葛人峰, 郭景松, 于非, 等. 黄、东海陆架海域温度垂直结构类型划分与温跃层分析[J]. 海洋科学进展, 2006, 24(4): 424-435.

    Ge Ren-feng, Guo Jing-song, Yu Fei, et al. Classification of Vertical Temperature Structure and Thermocline Analysis in the Yellow Sea and East China Sea Shelf Sea Areas[J]. Advances in Marine Science, 2006, 24(4): 424-435.
  • 加载中
计量
  • 文章访问数:  917
  • HTML全文浏览量:  2
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 修回日期:  2016-04-21
  • 刊出日期:  2016-06-20

目录

    /

    返回文章
    返回
    服务号
    订阅号