• 中国科技核心期刊
  • JST收录期刊
Volume 31 Issue 1
Feb  2023
Turn off MathJax
Article Contents
WANG Cong, XU Hai-yu, LU Jia-xing. Status and Prospects of Investigation into Multiphase Flow Field and Motion Characteristics of Trans-medium Vehicles during Water Entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082
Citation: WANG Cong, XU Hai-yu, LU Jia-xing. Status and Prospects of Investigation into Multiphase Flow Field and Motion Characteristics of Trans-medium Vehicles during Water Entry[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 38-49. doi: 10.11993/j.issn.2096-3920.2022-0082

Status and Prospects of Investigation into Multiphase Flow Field and Motion Characteristics of Trans-medium Vehicles during Water Entry

doi: 10.11993/j.issn.2096-3920.2022-0082
  • Received Date: 2022-11-30
  • Accepted Date: 2023-01-12
  • Rev Recd Date: 2022-12-26
  • Available Online: 2023-02-20
  • High-speed vehicles launched by surface or aerial platforms break the speed limit of traditional underwater weapons with the help of supercavity drag reduction technology and can effectively intercept and attack potential underwater threats with the advantage of high speed. This has become a hotspot of research worldwide. However, problems such as complex multiphase turbulence flow, unsteady evolution of the supercavity, and water entry impact load during the water-entry process of transmedium vehicles restrict the stable navigation of the supercavity vehicle and affect operational effectiveness. In this paper, from the aspects of unsteady supercavity flow patterns, trans-medium impact loads, and tail slaps of high-speed vehicles, the technical difficulties of stable water entry for trans-medium vehicles are summarized, the methods of load reduction for high-speed vehicles during the water-entry process are summarized, and the engineering applications of trans-medium supercavitating vehicles are summarized. Finally, the problems to be solved and future development tendencies of trans-medium vehicles are discussed.

     

  • loading
  • [1]
    Wang H, Huang Z, Huang D, et al. Influences of Floating Ice on the Vertical Water Entry Process of a Trans-Media Projectile at High Speeds[J]. Ocean Engineering, 2022, 265: 112548. doi: 10.1016/j.oceaneng.2022.112548
    [2]
    Nguyen V T, Phan T H, Duy T N, et al. 3D Simulation of Water Entry of an Oblique Cylinder with Six-degree-of-freedom Motions Using an Efficient Free Surface Flow Model[J]. Ocean Engineering, 2021, 220: 108409. doi: 10.1016/j.oceaneng.2020.108409
    [3]
    Chen C, Yuan X, Liu X, et al. Experimental and Numerical Study on the Oblique Water-Entry Impact of a Cavitating Vehicle with a Disk Cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494. doi: 10.1016/j.ijnaoe.2018.09.002
    [4]
    Liu H, Pi J, Zou B, et al. Experimental Investigation on the Multiphase Flow Characteristics of Oblique Water Entry of Semi-Closed Cylinder[J]. Ocean Engineering, 2021, 239: 109819. doi: 10.1016/j.oceaneng.2021.109819
    [5]
    Miloh T. On the Oblique Water-entry Problem of a Rigid Sphere[J]. Journal of Engineering Mathematics, 1991, 25: 77-92. doi: 10.1007/BF00036603
    [6]
    Song Z J, Duan W Y, Xu G D, et al. Experimental and Numerical Study of the Water Entry of Projectiles at High Oblique Entry Speed[J]. Ocean Engineering, 2020, 211: 107574. doi: 10.1016/j.oceaneng.2020.107574
    [7]
    Sun T, Shi C, Zhang G, et al. Cavity Dynamics of Vertical Water Entry of a Truncated Cone-Cylinder Body with Different Angles of Attack[J]. Physics of Fluids, 2021, 33(5): 055129. doi: 10.1063/5.0051703
    [8]
    Gilbarg D, Anderson R A. Influence of Atmospheric Pressure on the Phenomena Accompanying the Entry of Spheres into Water[J]. Journal of Applied Physics, 1948, 19(2): 127-139. doi: 10.1063/1.1698377
    [9]
    May A. Vertical Entry of Missiles into Water[J]. Journal of Applied Physics, 1952, 23(12): 1362-1372. doi: 10.1063/1.1702076
    [10]
    Duez C, Ybert C, Clanet C, et al. Making a Splash with Water Repellency[J]. Nature Physics, 2007, 3(3): 180-183. doi: 10.1038/nphys545
    [11]
    Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry Cavity Formed by Low Bond Number Impacts[J]. Physics of Fluids, 2008, 20(9): 091111. doi: 10.1063/1.2973662
    [12]
    Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry of Decelerating Spheres[J]. Meeting of the Aps Division of Fluid Dynamics, 2009, 22(3): 417-422.
    [13]
    Aristoff J M, Truscott T T. Water Entry of Small Hydrophobic Spheres[J]. Journal of Fluid Mechanics, 2009, 619: 45-78. doi: 10.1017/S0022112008004382
    [14]
    Aristoff J M, Truscott T T, Techet A H, et al. The Water Entry of Decelerating Spheres[J]. Physics of Fluids, 2010, 22(3): 032102. doi: 10.1063/1.3309454
    [15]
    Speirs N B, Mansoor M M, Belden J, et al. Water Entry of Spheres with Various Contact Angles[J]. Journal of Fluid Mechanics, 2019, 862(R3): jfm.2018.985.
    [16]
    Truscott T T, Epps B P, Belden J. Water Entry of Projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378. doi: 10.1146/annurev-fluid-011212-140753
    [17]
    Truscott T T, Epps B P, Techet A H. Unsteady Forces on Spheres During Free-Surface Water Entry[J]. Journal of Fluid Mechanics, 2012, 704: 173-210. doi: 10.1017/jfm.2012.232
    [18]
    Truscott T T, Techet A H. A Spin on Cavity Formation During Water Entry of Hydrophobic and Hydrophilic Spheres[J]. Physics of Fluids, 2009, 21(12): 121703.1-121703.4.
    [19]
    Truscott T T, Techet A H. Water Entry of Spinning Sph- eres[J]. Journal of Fluid Mechanics, 2009, 625: 135-165. doi: 10.1017/S0022112008005533
    [20]
    Zhou B, Liu H, Zhang G, et al. Numerical Simulation of Cavity Dynamics and Motion Characteristics for Water Entry of a Hydrophobic Sphere at Various Speeds and Angles[J]. Journal of Engineering Mechanics, 2020, 146(9): 4020091.1-4020091.17.
    [21]
    Marston J O, Vakarelski I U, Thoroddsen S T. Cavity Formation by the Impact of Leidenfrost Spheres[J]. Journal of Fluid Mechanics, 2012, 699: 465-488. doi: 10.1017/jfm.2012.124
    [22]
    Johnson W. The Ricochet of Spinning and Non-Spinning Projectiles, Mainly from Water. Part Ⅱ: An Outline of Theory and Warlike Applications[J]. International Journal of Impact Engineering, 1998, 21(1-2): 25-34. doi: 10.1016/S0734-743X(97)00033-X
    [23]
    Johnson W, Reid S R. Ricochet of Spheres of Water[J]. Journal of Mechanical Engineering Science, 1975, 17: 71-81. doi: 10.1243/JMES_JOUR_1975_017_013_02
    [24]
    Moxnes J F, Froland O, Skriudalen S, et al. On the Study of Ricochet and Penetration in Sand, Water and Gelatin by Spheres, 7.62 mm APM2, and 25 mm Projectiles[J]. Define Technology, 2016, 12(2): 159-170. doi: 10.1016/j.dt.2015.12.004
    [25]
    Belden J, Hurd R C, Jandron M A, et al. Elastic Spheres Can Walk on Water[J]. Nature Communications, 2016, 7: 10551. doi: 10.1038/ncomms10551
    [26]
    Hurd R, Fanning T, Pan Z, et al. Matryoshka Cavity[J]. Physics of Fluids, 2015, 27: 091104. doi: 10.1063/1.4930902
    [27]
    Hurd R, Belden J, Jandron M, et al. Water Entry of Deformable Spheres[J]. Journal of Fluid Mechanics, 2017, 824: 912-930. doi: 10.1017/jfm.2017.365
    [28]
    魏英杰, 杨柳, 王聪, 等. 超弹性球体垂直入水空泡流动研究[J]. 空气动力学学报, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132

    Wei Ying-jie, Yang Liu, Wang Cong, et al. Vertical Water Entry of Hyperelastic Sphere[J]. Acta Aerodynamica Sinica, 2020, 38(4): 780-787. doi: 10.7638/kqdlxxb-2019.0132
    [29]
    杨柳, 孙铁志, 魏英杰, 等. 超弹性球体入水过程空泡演化及球体变形实验[J]. 物理学报, 2021, 70(8): 289-297.

    Yang Liu, Sun Tie-zhi, Wei Ying-jie, et al. Experimental Study of Cavity Evolution and Deformation during Water Entering into Hyperelastic Sphere[J]. Acta Phys. Sin., 2021, 70(8): 289-297.
    [30]
    鹿麟, 闫雪璞, 胡彦晓, 等. 弹丸倾斜入水尾拍运动特性实验研究[J/OL]. 爆炸与冲击, [2022-10-27]. https://kns.cnki.net/kcms/detail/51.1148.O3.20221026.1728.032.html.

    Lu Lin, Yan Xue-pu, Hu Yan-xiao, et al. Experimental Investigation on Tail-Slapping Motion Characteristics for Oblique Water-Entry of a Projectile[J/OL]. Explosion and Shock Waves, [2022-10-27]. https://kns.cnki.net/kcms/detail/51.1148.O3.20221026.1728.032.html.
    [31]
    Truscott T T. Cavity Dynamics of Water Entry for Spheres and Ballistic Projectiles[D]. USA: Massachusetts Institute of Technology, 2009.
    [32]
    Kirschner I N. Results of Selected Experiments Involving Supercavitating Flows[C]//RTO-AVT Lecture Series on “Supercavitating Flows”. Brussels, Belgium: RTO EN-010-15, 2001.
    [33]
    Hrubes J D. High-speed imaging of Supercavitating Underwater Projectiles[J]. Experiments in Fluids, 2001, 30: 57-64. doi: 10.1007/s003480000135
    [34]
    Schaffar M J, Rey C J, Boeglen G S. Experiments on Supercavitating Projectiles Fired Horizontally into Water[C]//Proceedings of ASME 2002 Joint U. S. -European Fluids Engineering Division Conference. Montreal, QC, Canada: ASME, 2002.
    [35]
    Schaffar M J, Rey C J, Boeglen G S. Behavior of Supercavitating Projectiles Fired Horizontally in a Water Tank: Theory and Experiments. CFD Computations with the OTI-HULL Hydrocode[C]//Proceedings of 35th AIAA Fluid Dynamics Conference and Exhibit. Toronto, ON, Canada: AIAA, 2005.
    [36]
    郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [37]
    王晓辉, 孙士明, 季锦梁, 等. 基于耦合欧拉-拉格朗日方法的射弹高速入水尾拍数值分析[J]. 兵工学报, 2020, 41(1): 110-115.

    Wang Xiao-hui, Sun Shi-ming, Ji Jin-liang, et al. Numerical Analysis of Tail-Slapping of Projectile in Process of High-Speed Water-Entry Based on Coupled Eulerian-Lagrangian Method[J]. Acta Armamentarii, 2020, 41(1): 110-115.
    [38]
    刘如石, 郭则庆, 张辉. 尾部形状对超空泡射弹尾拍运动影响的数值研究[J/OL]. 兵工学报, [2022-10-27]. http:// www.co-journal.com/CN/10.12382/bgxb.2022.0689.

    Liu Ru-shi, Guo Ze-qing, Zhang Hui. Numerical Simulation on the Influence of Tail Shapes on the Tail-Slap of Supercavitating Projectiles[J/OL]. Acta Armamentarii, [2022-10-27]. http://www.co-journal.com/CN/10.12382/bgxb.2022.0689.
    [39]
    古鉴霄, 党建军, 黄闯, 等. 衡重参数对超空泡射弹有效射程的影响[J]. 兵工学报, 2022, 43(6): 1376-1386.

    Guo Jian-xiao, Dang Jian-jun, Huang Chuang, et al. Influence of Weight Parameters on the Effective Range of Supercavitation Projectile[J]. Acta Armamentarii, 2022, 43(6): 1376-1386.
    [40]
    赵成功, 王聪, 孙铁志, 等. 初始扰动对射弹尾拍运动及弹道特性影响分析[J]. 哈尔滨工业大学学报, 2016, 48(10): 71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010

    Zhao Cheng-gong, Wang Cong, Sun Tie-zhi, et al. Analysis of Tail-Slapping and Ballistic Characteristics of Supercavitating Projectiles Under Different Initial Disturbances[J]. Journal of Harbin Institute of Technology, 2016, 48(10): 71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010
    [41]
    姚忠, 王瑞, 祁晓斌, 等. 初始扰动对高速射弹尾拍过程流体动力特性与弹道特性的影响[J]. 兵工学报, 2020, 41(1): 46-53.

    Yao Zhong, Wang Rui, Qi Xiao-bin, et al. The Influence of Initial Disturbance on the Hydrodynamic and Ballistic Characteristics of High-Speed Projectile during Tail Slapping[J]. Acta Armamentarii, 2020, 41(1): 46-53.
    [42]
    李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性[J]. 哈尔滨工业大学学报, 2017, 49(4): 131-136. doi: 10.11918/j.issn.0367-6234.201512058

    Li Jia-chuan, Wei Ying-jie, Wang Cong, et al. Water Entry Trajectory Characteristics of High-Speed Projectiles with Various Turbulent Angular Velocity[J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131-136. doi: 10.11918/j.issn.0367-6234.201512058
    [43]
    Wu G X. Numerical Simulation of Water Entry of Twin-Wedges[J]. Journal of Fluids and Structures, 2006, 22(1): 99-108. doi: 10.1016/j.jfluidstructs.2005.08.013
    [44]
    Yousefnezhad R, Zeraatgar H. A Parametric Study on Water-Entry of a Twin Wedge by Boundary Element Method[J]. Journal of Marine Science Technology, 2014, 19: 314-326. doi: 10.1007/s00773-013-0250-1
    [45]
    王旭, 吕续舰. 双球并联入水空化及运动特性实验研究[J]. 振动与冲击, 2020, 39(15): 221-229. doi: 10.13465/j.cnki.jvs.2020.15.030

    Wang Xu, Lü Xu-jian. Tests for Cavitation and Motion Characteristics of Double-Ball Parallel Water Entry[J]. Journal of Vibration and Shock, 2020, 39(15): 221-229. doi: 10.13465/j.cnki.jvs.2020.15.030
    [46]
    王辰, 鹿麟, 祁晓斌. 超空泡射弹并联入水多相流场与弹道特性研究[J]. 振动与冲击, 2022, 41(10): 292-300.

    Wang Chen, Lu Lin, Qi Xiao-bin. Multiphase Flow Field and Trajectory Characteristics of Two Supercavitating Projectiles in Parallel Water-entry[J]. Journal of Vibration and Shock, 2022, 41(10): 292-300.
    [47]
    Mnasri C, Hafsia Z, Omri M, et al. A Moving Grid Model for Simulation of Free Surface Behavior Induced by Horizontal Cylinders Exit and Entry[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(2): 260-275. doi: 10.1080/19942060.2010.11015315
    [48]
    卢佳兴, 王聪, 魏英杰, 等. 轴线间距对圆柱体低速并联入水空泡演化影响试验研究[J]. 振动与冲击, 2020, 39(12): 272-280. doi: 10.13465/j.cnki.jvs.2020.12.037

    Lu Jia-xing, Wang Cong, Wei Ying-jie, et al. An Experimental Study on the Effect of Axis Distances on the Cavity Evolution in the Low-Speed Water Entry Process of Two Parallel Cylinders[J]. Journal of Vibration and Shock, 2020, 39(12): 272-280. doi: 10.13465/j.cnki.jvs.2020.12.037
    [49]
    宋武超, 魏英杰, 路丽睿, 等. 基于势流理论的回转体并联入水双空泡演化动力学研究[J]. 物理学报, 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375

    Song Wu-chao, Wei Ying-jie, Lu Li-rui, et al. Dynamic Characteristics of Parallel Water-Entry Cavity Based on Potential Flow Theory[J]. Acta Physica Sinica, 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
    [50]
    路丽睿, 魏英杰, 王聪, 等. 双圆柱体低速并联入水过程空泡及运动特性试验研究[J]. 振动与冲击, 2019, 38(7): 42-49.

    Lu Li-rui, Wei Ying-jie, Wang Cong, et al. Tests for Cavities and Motion Characteristics in Process of Two-Cylinder in Parallel Water Entry at Low Speed[J]. Journal of Vibration and Shock, 2019, 38(7): 42-49.
    [51]
    张鹤, 魏英杰, 王聪, 等. 并联射弹水下运动实验研究[J]. 舰船科学技术, 2021, 43(2): 71-75. doi: 10.3404/j.issn.1672-7649.2021.02.015

    Zhang He, Wei Ying-jie, Wang Cong, et al. Experimental Study on Underwater Motion of Parallel Projectiles[J]. Ship Science and Technology, 2021, 43(2): 71-75. doi: 10.3404/j.issn.1672-7649.2021.02.015
    [52]
    张鹤, 魏英杰, 王聪, 等. 侧方扰动下圆柱体异步并列入水试验[J]. 船舶工程, 2020, 42(9): 142-148. doi: 10.13788/j.cnki.cbgc.2020.09.25

    Zhang He, Wei Ying-jie, Wang Cong, et al. Experiment of Asynchronous Parallel Water-entry Process of Cylinders under Side Disturbance[J]. Ship Engineering, 2020, 42(9): 142-148. doi: 10.13788/j.cnki.cbgc.2020.09.25
    [53]
    闫雪璞, 鹿麟, 王辰超, 等. 超空泡射弹异步并联入水流场与运动特性研究[J]. 振动与冲击, 2022, 41(16): 167-176.

    Yan Xue-pu, Lu Lin, Wang Chen-chao, et al. A Study on Flow Field Characteristics and Motion Characteristics of Two Supercavitating Projectiles in Asynchronous Parallel Water-Entry[J]. Journal of Vibration and Shock, 2022, 41(16): 167-176.
    [54]
    黄海龙, 王聪, 余德磊. 高速射弹并联入水过程空泡演化特性试验[J]. 哈尔滨工业大学学报, 2020, 52(12): 15-20. doi: 10.11918/201903028

    Huang Hai-long, Wang Cong, Yu De-lei, et al. Experimental Study on Cavitation Evolution of High-Speed Projectile Water Entry in Parallel[J]. Journal of Harbin Institute of Technology, 2020, 52(12): 15-20. doi: 10.11918/201903028
    [55]
    Yun H, Lyu X, Wei Z. Experimental Study on Vertical Water Entry of Two Tandem Spheres[J]. Ocean Engineering, 2020, 201: 107143. doi: 10.1016/j.oceaneng.2020.107143
    [56]
    Yun H, Lyu X, Wei Z. Experimental Study on Oblique Water Entry of Two Tandem Spheres with Collision Effect[J]. Journal of Visualization, 2020, 23(1): 49-59.
    [57]
    周东辉. 水中多连发射弹的超空泡流动特性研究[D]. 杭州: 浙江理工大学, 2021.
    [58]
    余德磊, 曹伟, 魏英杰. 回转体低速串联入水空泡及运动特性试验研究[J]. 兵工学报, 2020, 41(7): 1375-1383. doi: 10.3969/j.issn.1000-1093.2020.07.015

    Yu De-lei, Cao Wei, Wei Ying-jie. Experimental Reaserch on Cavitation and Motion Characteristics of Low-Speed Water Entry of Rotary Bodies in Tandem[J]. Acta Armamentarii, 2020, 41(7): 1375-1383. doi: 10.3969/j.issn.1000-1093.2020.07.015
    [59]
    何春涛, 王聪, 何乾坤, 等. 圆柱体低速入水空泡试验研究[J]. 物理学报, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701

    He Chun-tao, Wang Cong, He Qian-kun, et al. Low Speed Water-Entry of Cylindrical Projectile[J]. Acta Physica Sinica, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
    [60]
    Wanger H. Uber Stoss-und Gleitvorgange an der Oberflache von Flussigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
    [61]
    Mayo W L. Hydrodynamic Impact of a System with a Single Elastic Mode[R]. USA: NACA, 1947.
    [62]
    Shi Y, Gao X F, Pan G. Experimental and Numerical Investigation of the Frequency-Domain Characteristics of Impact Load for AUV during Water Entry[J]. Ocean Engineering, 2020, 202: 107203. doi: 10.1016/j.oceaneng.2020.107203
    [63]
    郑强, 杨日杰, 陈佳琪, 等. 直升机空投鱼雷的散布误差研究[J]. 科学技术与工程, 2017, 17(15): 65-70. doi: 10.3969/j.issn.1671-1815.2017.15.009

    Zheng Qiang, Yang Ri-jie, Chen Jia-qi, et al. Research on Dispersion Errors of Helicopter’s Airdrop Torpedo[J]. Science Technology and Engineering, 2017, 17(15): 65-70. doi: 10.3969/j.issn.1671-1815.2017.15.009
    [64]
    温志文, 杨智栋, 王力竟. 空投鱼雷系统建模与空中弹道仿真研究[J]. 弹箭与制导学报, 2019, 39(5): 63-66,72. doi: 10.15892/j.cnki.djzdxb.2019.05.015

    Wen Zhi-wen, Yang Zhi-dong, Wang Li-jing. Modeling of the Air-Dropped Torpedo System and the Simulation Research of the Air Trajectory[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 63-66,72. doi: 10.15892/j.cnki.djzdxb.2019.05.015
    [65]
    陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析[J]. 爆炸与冲击, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387

    Chen Yang, Wu Liang, Zeng Guo-wei, et al. Numerical Analysis of the Water Entry Process of a Projectile with a Circular Airbag[J]. Explosion and Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387
    [66]
    石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027

    Shi Han-cheng, Jiang Pei, Cheng Jin-fang. Research on Numerical Simulation of Mine Water-Entry Impact Acceleration and Underwater Ballistic Trajectory under the Different Mine’s Head Shape[J]. Ship Science and Technology, 2010, 31(10): 104-107. doi: 10.3404/j.issn.1672-7649.2010.10.027
    [67]
    卢丙举, 朱珠. 细长前锥段超空泡航行器高速入水的载荷数值模拟[J]. 舰船科学技术, 2017, 39(8): 119-123. doi: 10.3404/j.issn.1672-7649.2017.08.025

    Lu Bing-ju, Zhu Zhu. Numerical Research on Load of a Super-Cavity Vehicle with Cone-Shaped Segment at High-Speed Water-Entry[J]. Ship Science and Technology, 2017, 39(8): 119-123. doi: 10.3404/j.issn.1672-7649.2017.08.025
    [68]
    Guo Z, Zhang W, Wang C. Experimental and Theoretical Study on the High-Speed Horizontal Water Entry Behaviors of Cylindrical Projectiles[J]. Journal of Hydrodynamics, Ser. B, 2012, 24(2): 217-225. doi: 10.1016/S1001-6058(11)60237-0
    [69]
    Guo Z, Zhang W, Xiao X, et al. An Investigation into Horizontal Water Entry Behaviors of Projectiles with Different Nose Shapes[J]. International Journal of Impact Engineering, 2012, 49(2): 43-60.
    [70]
    杨宇. 细长杆头型航行体高速入水载荷特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [71]
    Hincley W M, Yang J C S. Analysis of Rigid Polyurethane Foam as a Shock Mitigator[J]. Experimental Mechanics, 1975, 15: 177-183. doi: 10.1007/BF02319143
    [72]
    宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究[J]. 鱼雷技术, 1999, 7(2): 45-50.
    [73]
    徐新栋, 李建辰, 曹小娟. 鱼雷缓冲头帽入水冲击性能研究[J]. 鱼雷技术, 2012, 20(3): 161-165.

    Xu Xin-dong, Li Jian-chen, Cao Xiao-juan. Water-entry Impact Performance of Torpedo’s Cushion Nose Cap[J]. Torpedo Technology, 2012, 20(3): 161-165.
    [74]
    王永虎, 石秀华, 王鹏. 雷弹入水冲击动态缓冲性能分析[J]. 西北工业大学学报, 2009, 27(5): 707-712. doi: 10.3969/j.issn.1000-2758.2009.05.023

    Wang Yong-hu, Shi Xiu-hua, Wang Peng. Exploring Analysis of Dynamic Cushioning Properties of Water-entry Missile’s Shock Mitigator[J]. Journal of Northwestern Polytechnical University, 2009, 27(5): 707-712. doi: 10.3969/j.issn.1000-2758.2009.05.023
    [75]
    Robert A S, Margaret R M, Paul A L. Method of Producing Missile Nose Cones: 20100326182A1[P]. 2009-06-25.
    [76]
    Wu S Y, Shao Z Y, Feng S S, et al. Water-entry Behavior of Projectiles under the Protection of Polyurethane Buffer Head[J]. Ocean Engineering, 2020, 197: 106890. doi: 10.1016/j.oceaneng.2019.106890
    [77]
    Shi Y, Gao X F, Pan G. Design and Load Reduction Performance Analysis of Mitigator of AUV during High-speed Water Entry[J]. Ocean Engineering, 2019, 181: 314-329. doi: 10.1016/j.oceaneng.2019.03.062
    [78]
    施瑶, 刘振鹏, 潘光, 等. 航行体梯度密度式头帽结构设计及降载性能分析[J]. 力学学报, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620

    Shi Yao, Liu zhen-peng, Pan Guang, et al. Structural Design and Load Reduction Performance Analysis of Gradient Density Head Cap of Vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953. doi: 10.6052/0459-1879-21-620
    [79]
    张学广, 边金尧, 方世武. Д形圆柱体大角度撞水载荷计算及缓冲问题的研究[J]. 中国舰船研究, 2007, 2(5): 30-32, 41. doi: 10.3969/j.issn.1673-3185.2007.05.007

    Zhang Xue-guang, Bian Jin-rao, Sun Shi-wu. Water Impact Load Calculation and Buffering Design of Д Type Cylinder Structure at Large Angle[J]. Chinese Journal of Ship Research, 2007, 2(5): 30-32, 41. doi: 10.3969/j.issn.1673-3185.2007.05.007
    [80]
    潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体入水缓冲机制研究[J]. 工程热物理学报, 2015, 36(8): 1691-1695.

    Pan Long, Wang Huan-ran, Yao Er-ren, et al. Mechanism Research on the Water-Entry Impact of the Head-Jetting Flat Cylinder[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691-1695.
    [81]
    刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟[J]. 工程热物理学报, 2019, 40(2): 300-305.

    Liu Hua-ping, Yu Fei-peng, Han Bing, et al. Numerical Simulation Study on Influence of Top Jet in Object Water Entering Impact[J]. Journal of Engineering Thermophysics, 2019, 40(2): 300-305.
    [82]
    赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析[J]. 西北工业大学学报, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810

    Zhao Hai-rui, Shi Yao, Pan Guang. Numerical Simulation of Cavitation Characteristics in High-Speed Water Entry of Head-Jetting Underwater Vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810-817. doi: 10.1051/jnwpu/20213940810
    [83]
    Ruggaber W. BARRACUDA—Guidance and Control of a Supercavitating High Speed UW(Underwater) Missile[J]. Naval Forces, 2006, 27(5): 44-49.
    [84]
    庄芷渔. 挪威Cav-X超空泡水下枪弹[J]. 兵器知识, 2019, 8: 35-37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article Views(405) PDF Downloads(135) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return