• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 5
Oct  2022
Turn off MathJax
Article Contents
LIU Xiang-yu, WANG Yan, WANG Hao, XU Min-yi. Research on Flexible Triboelectric Nanogenerator for Underwater Energy Harvesting[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 543-549. doi: 10.11993/j.issn.2096-3920.202112016
Citation: LIU Xiang-yu, WANG Yan, WANG Hao, XU Min-yi. Research on Flexible Triboelectric Nanogenerator for Underwater Energy Harvesting[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 543-549. doi: 10.11993/j.issn.2096-3920.202112016

Research on Flexible Triboelectric Nanogenerator for Underwater Energy Harvesting

doi: 10.11993/j.issn.2096-3920.202112016
  • Received Date: 2021-12-17
  • Accepted Date: 2022-08-11
  • Rev Recd Date: 2022-01-25
  • Available Online: 2022-09-05
  • The marine distributed sensor network is composed of numerous wireless sensor nodes, which are crucial for ocean development and protection. These sensors are highly dependent on batteries and difficult to operate for long working times. Therefore, developing marine energy-harvesting devices is necessary for achieving in situ self-powered sensors. According to the principle of the triboelectric effect, this study proposed a flexible triboelectric nanogenerator(F-TENG) composed of flexible polymer films, which vibrates under waves and ocean currents and converts mechanical energy to electrical energy. This study established the working model of F-TENG and further explored its vibration mode and output performance. The results showed that the output performance of the F-TENG increased with the increasing amplitude, frequency, and flow rate within a certain range, and the parallel power increased with the increasing unit. This provides a new concept for realizing self-powered of marine distributed sensors.

     

  • loading
  • [1]
    Xu G, Shi Y, Sun X, et al. Internet of Things in Marine Environment Monitoring: A Review[J]. Sensors (Basel), 2019, 19(7): 1711-1732.
    [2]
    李红志, 闫晨阳, 贾文娟. 海洋温盐深传感器技术自主创新与产业发展的几点思考[J]. 水下无人系统学报, 2021, 29(3): 249-256.

    Li Hong-zhi, Yan Chen-yang, Jia Wen-juan. Some Thoughts on Independent Innovation and Industrial Development of Ocean CTD Sensor Technology[J]. Journal of Unmanned Undersea Systems, 2021, 29(3): 249-256.
    [3]
    Howe B M, Chao Y, Arabshahi P, et al. A Smart Sensor Web for Ocean Observation: Fixed and Mobile Platforms, Integrated Acoustics, Satellites and Predictive Modeling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(4): 507-521. doi: 10.1109/JSTARS.2010.2052022
    [4]
    Falnes J. A Review of Wave-energy Extraction[J]. Marine Structures, 2007, 20(4): 185-201. doi: 10.1016/j.marstruc.2007.09.001
    [5]
    Kofoed J P, Frigaard P, Friis-Madsen E, et al. Prototype Testing of the Wave Energy Converter Wave Dragon[J]. Renewable Energy, 2006, 31(2): 181-189. doi: 10.1016/j.renene.2005.09.005
    [6]
    Allen J J, Smits A J. Energy Harvesting EEL[J]. Journal of Fluids and Structures, 2001, 15: 629-640. doi: 10.1006/jfls.2000.0355
    [7]
    Khan U, Kim S W. Triboelectric Nanogenerators for Blue Energy Harvesting[J]. ACS Nano, 2016, 10(7): 6429-32. doi: 10.1021/acsnano.6b04213
    [8]
    Xu M, Wang P, Wang Y-C, et al. A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing[J]. Advanced Energy Materials, 2018, 8(9): 1702432. doi: 10.1002/aenm.201702432
    [9]
    Wang X, Wen Z, Guo H, et al. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator[J]. ACS Nano, 2016, 10(12): 11369-11376. doi: 10.1021/acsnano.6b06622
    [10]
    Wang Z L. Triboelectric Nanogenerators as New Energy Technology and Self-powered Sensors-principles, Problems and Perspectives[J]. Faraday Discuss, 2014, 176: 447-58. doi: 10.1039/C4FD00159A
    [11]
    杨恩, 王岩, 王建业, 等. 基于薄膜拍打型摩擦纳米发电机的风能收集研究[J]. 中国科学: 技术科学, 2021, 51(6): 684-698. doi: 10.1360/SST-2020-0391

    Yang En, Wang Yan, Wang Jian-ye, et al. Research on a Film-Flapping Triboelectric Nanogenerator for Wind Energy Harvesting[J]. Scientia Sinica Technologica, 2021, 51(6): 684-698. doi: 10.1360/SST-2020-0391
    [12]
    Xu M, Zhao T, Wang C, et al. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy[J]. ACS Nano, 2019, 13(2): 1932-1939.
    [13]
    Kim D Y, Kim H S, Kong D S, et al. Floating Buoy-based Triboelectric Nanogenerator for an Effective Vbrational Energy Harvesting from Irregular and Random Water Waves in Wild sea[J]. Nano Energy, 2018, 45: 247-254. doi: 10.1016/j.nanoen.2017.12.052
    [14]
    Xi Y, Guo H, Zi Y, et al. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor[J]. Advanced Energy Materials, 2017, 7(12): 1602397. doi: 10.1002/aenm.201602397
    [15]
    Xu L, Jiang T, Lin P, et al. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting[J]. ACS Nano, 2018, 12(2): 1849-1858. doi: 10.1021/acsnano.7b08674
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(192) PDF Downloads(69) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return