• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由液面对NACA0012翼型流体动力特性影响研究

刘钊 黄闯 杨昊 贺旭 党建军

刘钊, 黄闯, 杨昊, 等. 自由液面对NACA0012翼型流体动力特性影响研究[J]. 水下无人系统学报, 2023, 31(3): 365-372 doi: 10.11993/j.issn.2096-3920.202205010
引用本文: 刘钊, 黄闯, 杨昊, 等. 自由液面对NACA0012翼型流体动力特性影响研究[J]. 水下无人系统学报, 2023, 31(3): 365-372 doi: 10.11993/j.issn.2096-3920.202205010
LIU Zhao, HUANG Chuang, YANG Hao, HE Xu, DANG Jianjun. Free Surface Effects on the Hydrodynamic Characteristics of NACA0012[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 365-372. doi: 10.11993/j.issn.2096-3920.202205010
Citation: LIU Zhao, HUANG Chuang, YANG Hao, HE Xu, DANG Jianjun. Free Surface Effects on the Hydrodynamic Characteristics of NACA0012[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 365-372. doi: 10.11993/j.issn.2096-3920.202205010

自由液面对NACA0012翼型流体动力特性影响研究

doi: 10.11993/j.issn.2096-3920.202205010
基金项目: 国家自然科学基金项目资助(51909218); 水下信息与控制重点实验室开放研究项目资助(2021JCJQLB03007); 中央高校基本科研业务费专项资金资助(D5000220168)
详细信息
    通讯作者:

    黄 闯(1989-), 男, 博士, 副研究员, 主要研究方向为水下超高速航行技术

  • 中图分类号: U661.1; TJ630.2

Free Surface Effects on the Hydrodynamic Characteristics of NACA0012

  • 摘要: 跨介质航行器在跨越水空介质运动时, 自由液面对航行器机翼有较大的影响, 为总体设计和航行控制带来挑战。为了探究机翼从空中和水下远场接近自由液面过程的流体动力特性变化, 以NACA0012翼型为例, 采用计算流体动力学方法, 基于流体体积多相流模型建立机翼从空中和水下接近自由液面的流场数值仿真模型, 验证了模型的可行性, 研究了机翼工作在自由液面附近时的流体动力特性。结果表明: 机翼以正攻角从空中远场接近自由液面的过程中, 阻力系数逐渐减小, 升力系数和升阻比都逐渐增大; 机翼从水下远场接近自由液面的过程中, 升力系数和升阻比均逐渐减小, 当距离超过10倍弦长时, 阻力系数因兴波作用逐渐增大, 当距离小于10倍弦长时阻力系数则迅速减小。研究结果可为跨介质航行器的总体设计和航行控制提供参考。

     

  • 图  1  计算域边界示意图

    Figure  1.  Schematic of computational boundary

    图  2  网格划分细节

    Figure  2.  Details of grid distribution

    图  3  网格无关性验证对比图

    Figure  3.  Result of grid independent verification

    图  4  计算域无关性验证对比图

    Figure  4.  Result of computational field independent verification

    图  5  流体动力系数仿真与实验结果对比

    Figure  5.  Comparison of hydrodynamic coefficient between simulation and experiment

    图  6  机翼在空中工况的流体动力特性曲线

    Figure  6.  Hydrodynamic characteristics curves of airfoil under air condition

    图  7  机翼在水下工况的流体动力特性曲线

    Figure  7.  Hydrodynamic characteristics curves of airfoil under water condition

    图  8  不同工作高度的阻力系数压差分量和摩擦分量对比曲线

    Figure  8.  Comparison of pressure and fractional components of drag cofficients in different operational altitudes

    图  9  机翼表面压力系数变化规律

    Figure  9.  Surface pressure coefficient verification law of airfoil

    图  10  不同工作高度的机翼表面压力系数对比曲线

    Figure  10.  Comparison of surface pressure coefficient of airfoil in different operational altitudes

    图  11  不同工作深度的阻力系数压差分量和摩擦分量对比曲线

    Figure  11.  Comparison of pressure and fractional components of drag cofficients in different operational depths

    图  12  不同工作深度的机翼表面压力系数对比曲线

    Figure  12.  Comparison of surface pressure coefficient of airfoil in different operational depth

    图  13  翼型附近静压分布对比

    Figure  13.  Comparison of static pressure distribution around airfoil

  • [1] 刘双, 何广华, 王威, 等. 深水密度层航行潜艇兴波阻力的影响分析[J]. 哈尔滨工程大学学报, 2021, 42(9): 1373-1379. doi: 10.11990/jheu.202005056

    Liu Shuang, He Guohua, Wang Wei, et al. Effect of density stratification on wave-making resistance of submarine navigating in deepwater[J]. Journal of Harbin Engineering University, 2021, 42(9): 1373-1379. doi: 10.11990/jheu.202005056
    [2] 杨美, 杨韡, 杨志刚. 地效翼地面粘性效应风洞试验研究[J]. 空气动力学学报, 2015, 33(1): 82-86.

    Yang Mei, Yang Wei, Yang Zhigang. Wind tunnel test of ground viscous effect on wing aerodynamics[J]. Acta Aerodynamica Sinica, 2015, 33(1): 82-86.
    [3] Weisler W, Stewart W, Anderson M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 969-982. doi: 10.1109/JOE.2017.2742798
    [4] Siddall R, Ancel A O, Kovac M. Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface Focus, 2017, 7(1): 20160085. doi: 10.1098/rsfs.2016.0085
    [5] 王岱峰, 代钦. 近自由表面对称翼型气动特性的实验研究[J]. 水动力学研究与进展A辑, 2010, 25(5): 703-10.

    Wang Daifeng, Dai Qin. Experimental research on the aerodynamics of a symmetrical airfoil near free surface[J]. Chinese Journal of hydrodynamics, 2010, 25(5): 703-10.
    [6] 喻海川, 李盾, 何跃龙, 等. 地效机翼气动特性及端板效应数值研究[J]. 空气动力学学报, 2017, 35(5): 655-8.

    Yu Haichuan, Li Dun, He Yuelong, et al. Numerical study on aerodynamic characteristics of wing-in-ground and effect of end plates[J]. Acta Aerodynamica Sinica, 2017, 35(5): 655-8.
    [7] Marshall D W, Newman S J, Williams C B. Boundary layer effects on a wing in ground-effect[J]. Aircraft Engineering and Aerospace Technology, 2010, 82(2): 99-106. doi: 10.1108/00022661011053391
    [8] 屈秋林, 刘沛清. 地效飞行器地面巡航气动性能数值模拟及分析[J]. 航空学报, 2006(1): 16-22. doi: 10.3321/j.issn:1000-6893.2006.01.004

    Qu Qiulin, Liu Peiqing. Numerical simulation and analysis of aerodynamics of wig craft in cruise over ground[J]. Acta Aeronautica et Astronautica Sinica, 2006(1): 16-22. doi: 10.3321/j.issn:1000-6893.2006.01.004
    [9] Nematollahi A, Dadvand A, Dawoodian M. An axisymmetric underwater vehicle-free surface interaction: A numerical study[J]. Ocean Engineering, 2015, 96: 205-14. doi: 10.1016/j.oceaneng.2014.12.028
    [10] 姜宜辰, 赵月, 熊济时, 等. 水下航行器艇体形状对阻力及流噪声综合影响[J]. 哈尔滨工程大学学报, 2022, 43(1): 76-82,138.

    Jiang Yichen, Zhao Yue, Xiong Jishi, et al. Comprehensive influence of underwater vehicle hull shape on resistance and flow noise[J]. Journal of Harbin Engineering University, 2022, 43(1): 76-82,138.
    [11] 何广华, 刘双, 张志刚, 等. 附体对潜艇兴波尾迹的影响分析[J]. 华中科技大学学报(自然科学版), 2019, 47(10): 56-62. doi: 10.13245/j.hust.191011

    He Guanghua, Liu Shuang, Zhang Zhigang, et al. Analysis of influence of appendages on wave-making of submarine[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(10): 56-62. doi: 10.13245/j.hust.191011
    [12] 胡健, 郭磊, 李聪慧, 等. 近自由面水翼性能分析[J]. 应用科技, 2017, 44(4): 5-11.

    Hu Jian, Guo Lei, Li Conghui, et al. Hydrodynamic performance analysis of hydrofoil in the vicinity of free surface[J]. Applied Science and Technology, 2017, 44(4): 5-11.
    [13] Jones W P, Launder B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-14. doi: 10.1016/0017-9310(72)90076-2
    [14] Launder B E, Sharma B I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer, 1974, 1(2): 131-137. doi: 10.1016/0094-4548(74)90150-7
    [15] Olayemi O A, Ogunwoye O V, Olabemiwo J T, et al. Analysis of flow characteristics around an inclined NACA0012 airfoil using various turbulence models[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1107(1): 012133. doi: 10.1088/1757-899X/1107/1/012133
  • 加载中
图(13)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  21
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-06-26
  • 录用日期:  2023-05-23
  • 网络出版日期:  2023-05-26

目录

    /

    返回文章
    返回
    服务号
    订阅号