• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜艇声诱饵防御声自导鱼雷改进PSO算法

侯文姝 陆铭华

侯文姝, 陆铭华. 潜艇声诱饵防御声自导鱼雷改进PSO算法[J]. 水下无人系统学报, 2023, 31(3): 436-441 doi: 10.11993/j.issn.2096-3920.202205001
引用本文: 侯文姝, 陆铭华. 潜艇声诱饵防御声自导鱼雷改进PSO算法[J]. 水下无人系统学报, 2023, 31(3): 436-441 doi: 10.11993/j.issn.2096-3920.202205001
HOU Wenshu, LU Minghua. Improved PSO Algorithm to Defend against Acoustic Homing Torpedoes Using an Acoustic Decoy of a Submarine[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 436-441. doi: 10.11993/j.issn.2096-3920.202205001
Citation: HOU Wenshu, LU Minghua. Improved PSO Algorithm to Defend against Acoustic Homing Torpedoes Using an Acoustic Decoy of a Submarine[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 436-441. doi: 10.11993/j.issn.2096-3920.202205001

潜艇声诱饵防御声自导鱼雷改进PSO算法

doi: 10.11993/j.issn.2096-3920.202205001
详细信息
    作者简介:

    侯文姝(1985-), 女, 博士, 工程师, 主要研究方向为潜艇水声对抗

  • 中图分类号: TJ631.5; U666.75

Improved PSO Algorithm to Defend against Acoustic Homing Torpedoes Using an Acoustic Decoy of a Submarine

  • 摘要: 潜艇使用单个小口径自航式声诱饵防御正在进行蛇形搜索的声自导鱼雷时, 应快速得出防御方案使鱼雷与潜艇距离最大化。通过分析种群粒子数、迭代次数、粒子速度的上限、加速度因子和种群初始化方法等因素对基于并行计算的粒子群优化(PSO)算法的影响, 确定该算法的改进方向。改进的PSO算法通过扩大粒子速度的上限以及在迭代过程中重新生成粒子群, 适应度值大于7 500 m的仿真次数比改进前提高了95%, 且在不增加计算量的情况下收敛得更快, 达到提升解算效率的目的。

     

  • 图  1  粒子个体极值适应度值

    Figure  1.  Fitness of individual extreme value of each particle

    图  2  最后一次迭代群体极值适应度值分布

    Figure  2.  Distribution of fitness of swarm extreme value in the last iteration

    图  3  基于并行计算的改进PSO算法流程

    Figure  3.  Flowchart of improved PSO algorithm based on parallel computation

    图  4  潜艇声诱饵防御鱼雷仿真轨迹

    Figure  4.  Simulation track of defending torpedo by acoustic decoy of submarine

    图  5  改进PSO算法的粒子个体极值适应度值

    Figure  5.  Fitness of individual extreme value of each particle of improved PSO algorithm

    图  6  改进PSO算法群体极值适应度值分布

    Figure  6.  Distribution of fitness of swarm extreme value for improved PSO algorithm

  • [1] 林宗祥, 周明, 门金柱. 一种求解自航式声诱饵航向的方法[J]. 舰船科学技术, 2008, 30(6): 167-168. doi: 10.3404/j.issn.1672-7649.2008.06.037

    Lin Zongxiang, Zhou Ming, Men Jinzhu. A method of calculating the course of mobile acoustic decoy[J]. Ship Science and Technology, 2008, 30(6): 167-168. doi: 10.3404/j.issn.1672-7649.2008.06.037
    [2] 李长军, 王顺意. 潜射自航式声诱饵发射时机与初始航向模型[J]. 鱼雷技术, 2010, 18(6): 471-475.

    Li Changjun, Wang Shunyi. Models of launching opportunity and initial course for mobile acoustic decoy launched by submarine[J]. Torpedo Technology, 2010, 18(6): 471-475.
    [3] 程健, 张会. 潜艇使用声抗器材防御鱼雷方案优化模型及模型求解策略[J]. 指挥控制与仿真, 2019, 41(6): 48-51.

    Cheng Jian, Zhang Hui. Optimal model and model solving strategy of submarine torpedo defence using acoustic countermeasure equipment[J]. Command Control and Simulation, 2019, 41(6): 48-51.
    [4] 李雯, 迟利华, 张会, 等. 潜艇使用自航式声诱饵防御鱼雷模型并行计算方法研究[J]. 计算机工程与科学, 2020, 42(12): 2163-2168.

    Li Wen, Chi Lihua, Zhang Hui, et al. Research on the parallel computing method of submarine’s torpedo defense model with self-propelled acoustic decoy[J]. Computer Engineering & Science, 2020, 42(12): 2163-2168.
    [5] 陈迎春, 吴碧, 蔡旭东. 自航式声诱饵对抗声自导鱼雷的策略[J]. 舰船科学技术, 2012, 34(6): 83-86.

    Chen Yingchun, Wu Bi, Cai Xudong. Optimal strategy for swim-out acoustic decoy to countermeasure torpedo[J]. Ship Science and Technology, 2012, 34(6): 83-86.
    [6] 彭会斌. 基于遗传算法的潜艇组合使用声诱饵防御鱼雷技术研究[J]. 指挥控制与仿真, 2018, 40(1): 52-55.

    Peng Huibin. Research on defending torpedo by combining use of acoustic decoys for submarine based on genetic algorithm[J]. Command Control and Simulation, 2018, 40(1): 52-55.
    [7] 高学强, 杨日杰. 运用遗传算法的反鱼雷对抗优化方案研究[J]. 哈尔滨工程大学学报, 2010, 31(10): 1286-1292. doi: 10.3969/j.issn.1006-7043.2010.10.003

    Gao Xueqiang, Yang Rijie. Research on optimization of an anti-torpedo counterplan using genetic algorithm[J]. Journal of Harbin Engineering University, 2010, 31(10): 1286-1292. doi: 10.3969/j.issn.1006-7043.2010.10.003
    [8] 孟庆玉, 张静远, 宋保维. 鱼雷作战效能分析[M]. 北京: 国防工业出版社, 2003.
    [9] Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995: 1942-1948.
    [10] 史峰, 王辉, 郁磊, 等. MATLAB智能算法30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011.
    [11] Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea: IEEE, 2001: 101-106.
    [12] Wang F, Zhang H, Li K, et al. A hybrid particle swarm optimization algorithm using adaptive learning strategy[J]. Information Sciences, 2018, 436: 162-177.
    [13] Niu B, Huang H, Tan L, et al. Symbiosis-based alternative learning multi-swarm particle swarm optimization[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(1): 4-14. doi: 10.1109/TCBB.2015.2459690
    [14] 郑亚波, 李文哲, 周明, 等. 基于声诱饵对抗的火箭助飞鱼雷命中概率仿真[J]. 火力与指挥控制, 2020, 45(4): 131-135.

    Zheng Yabo, Li Wenzhe, Zhou Ming, et al. Research on the hit probability of rocket assisted torpedo based on anti-torpedo of submarine with swim-out decoy[J]. Fire Control & Command Control, 2020, 45(4): 131-135.
    [15] 刘伯胜, 黄益旺, 陈文剑, 等. 水声学原理[M]. 3版. 北京: 科学出版社, 2019.
  • 加载中
图(6)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  11
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2022-06-30
  • 录用日期:  2023-05-18
  • 网络出版日期:  2023-05-25

目录

    /

    返回文章
    返回
    服务号
    订阅号