Water-jet Propulsion Characteristics of Vehicle Planing
-
摘要: 基于STAR-CCM+软件, 采用剪切应力传输 k-ω 湍流模型、多重参考系模型和理想水泵模型构建航行器水面滑行喷水推进数值仿真模型, 并进行了可行性验证。基于理想水泵模型对内流道单侧进水特性进行仿真, 用理想水泵特征压差的大小来表征轴流水泵吸水能力。并对航行器在不同压差和不同浸没深度水面滑行工况进行数值仿真, 研究其流场特性和流体动力特性。结果表明, 理想水泵模型对轴流水泵吸水具有较好的仿真效果; 对比不同特征压差航行器内流道的流体动力特性, 发现随着压力值的增大, 内流道阻力明显增大, 内流道升力几乎不变; 在不同浸没深度水面滑行数值仿真中, 当进水口浸没深度大于20 mm时, 内流道进水效果不再受浸没深度影响。研究结果可为航行器水面滑行喷水推进工程应用提供参考。Abstract: This study employed the shear stress transport(SST) k-ω turbulence model, multiple reference frame(MRF) model, and ideal pump model to construct a numerical simulation model of water-jet propulsion for vehicle planing. The model was implemented in STAR-CCM+ software, and its feasibility was verified. On the basis of the ideal pump model, the influent characteristics of the inner flow channel were simulated for one side with the characteristic pressure difference of the ideal pump and water absorption capacity of the axial flow pump. The flow field and hydrodynamic characteristics of vehicle planing with different pressure differences and immersion depths were studied using numerical simulation. The results show that the ideal pump model can simulate the water absorption of the axial flow pump well. A comparison of the hydrodynamic characteristics of the inner passage of the vehicle under different pressure differences reveals that with an increase in pressure, the inner passage drag increases significantly, and the inner passage lift force remains nearly unchanged. The numerical simulations of planing at different immersion depths reveal that for immersion depths of the inlet greater than 20 mm, the influent effect of the inner flow passage would no longer be impacted by immersion depth. These results provide a reference for water-jet propulsion engineering applications of vehicle planing.
-
Key words:
- vehicle /
- planing /
- water-jet propulsion /
- hydrodynamic characteristics
-
表 1 不同网格数量特定工况水面滑行阻力特性
Table 1. Drag characteristics of planing at a specific condition under different mesh quantity
网格数量 Fd/N 360万 628.3 450万 530.8 570万 539.6 684万 540.2 表 2 不同ΔP下航行器水面滑行理想水泵推力与总阻力
Table 2. Ideal pump thrust and total drag for vehicle planing under different ΔP
∆P/kPa Ttx/N Fd/N 0 0.0 153.2 20 178.8 341.6 30 268.1 395.8 40 357.5 445.6 50 446.9 483.7 60 536.3 539.6 表 3 不同
$ \boldsymbol{\Delta P} $ 下航行器喷水特性及流体动力特性Table 3. Water-jet characteristics and hydrodynamic characteristics of a vehicle under different
$\boldsymbol{\Delta P}$ $\Delta P$/kPa M/(kg/s) vout/(m/s) Fd/N Fd_out/N Fd_in/N Fl/N Fl_out/N Fl_in/N 0 0.347 1.59 153.20 153.80 −0.57 338.8 358.3 −19.5 20 26.700 7.30 341.60 149.20 192.40 333.5 411.0 −77.5 30 31.700 8.85 395.80 148.60 247.20 332.2 413.4 −81.2 40 35.800 9.74 445.60 146.70 298.90 328.7 412.8 −84.1 50 39.100 10.69 483.70 146.10 337.60 317.9 406.6 −88.7 60 43.100 11.64 539.60 145.70 393.90 314.8 404.2 −89.4 表 4 不同ΔP下航行器水平推力和阻力特性
Table 4. Horizontal thrust and drag characteristics of the vehicle under different ΔP
∆P/kPa Ttx/N Fd_b/N Fd_t/N 60 536.3 539.6 694.6 70 625.7 583.6 738.6 80 715.0 622.3 777.3 90 804.4 650.5 805.5 100 893.8 683.2 838.2 表 5 航行器不同浸没深度水面滑行流体动力特性
Table 5. Hydrodynamic characteristics of vehicle planing at different immersion depths
h/mm M/(kg/s) vout/(m/s) Fd/N Fd_out/N Fd_in/N Fl/N Fl_out/N Fl_in/N 2 33.3 58.2 661 40 621 −133 −36 −97 20 52.2 14.0 544 39 505 −65 31 −96 40 51.7 13.9 576 69 506 −65 35 −100 60 51.6 14.2 619 109 510 63 163 −100 80 51.6 14.2 637 118 519 163 266 −103 100 51.7 13.9 650 142 509 299 396 −97 120 51.2 13.9 660 153 507 340 439 −99 -
[1] 茹呈瑶. 现代鱼雷、水雷技术发展研究[J]. 舰船科学技术, 2003, 25(4): 42-43. [2] 张宝华, 杜选民. 水面舰艇鱼雷防御系统综述[J]. 船舶工程, 2003, 25(4): 17-19. doi: 10.3969/j.issn.1000-6982.2003.04.004 [3] 马玲. 各国海军强调鱼雷的浅水使用[J]. 鱼雷技术, 1998, 6(1): 55-60. [4] 王立祥. 喷水推进及喷水推进泵[J]. 通用机械, 2007(10): 12-15. doi: 10.3969/j.issn.1671-7139.2007.10.003 [5] 孔庆福, 吴家明, 贾野, 等. 舰船喷水推进技术研究[J]. 舰船科学技术, 2004, 26(3): 28-30. [6] 吴玉玮. 某游艇喷水推进系统设计及性能分析[D]. 镇江: 江苏科技大学, 2015. [7] 郑昆山. 基于喷水矢量推进的水下机器人设计与研究[D]. 长沙: 国防科技大学, 2010. [8] 金平仲. 船舶喷水推进[M]. 北京: 国防工业出版社, 1986. [9] 杨修水. 2010, 世界大洋里的新生代——核潜艇篇[J]. 当代海军, 2004(9): 50-55. [10] 乔宏, 韩新波, 伊进宝, 等. 固体推进剂涡轮喷水发动机工作性能研究[J]. 鱼雷技术, 2012, 20(2): 120-124. [11] Van T. Waterjet-hull interaction[D]. Delft, The Netherlands: Delft University of Technology, 1996. [12] Dang J, Liu R W, Pouw C. Waterjet system performance and cavitation test procedures[C]//Proceedings of the third international symposium on marine propulsors. Launceston, Australia: Australian Maritime College, University of Tasmania, 2013: 87-96. [13] Park W G, Jin H J, Chun H H, et al. Numerical flow and performance analysis of waterjet propulsion system[J]. Ocean Engineering, 2005, 32(14-15): 1740-1761. doi: 10.1016/j.oceaneng.2005.02.004 [14] Park W G, Yun H S, Chun H H, et al. Numerical flow simulation of flush type intake duct of waterjet[J]. Ocean Engineering, 2005, 32(17): 2107-2120. [15] 苑龙飞, 罗凯, 蒋彬, 等. 喷水推进系统在浅水高速工况下适应性问题的数值分析[J]. 水动力学研究与进展A辑, 2016, 31(2): 225-231. [16] 刘成勇. 水下航行器喷水推进系统浅水性能研究[D]. 西安: 西北工业大学, 2018. [17] Roohi E, Pendar M, Rahimi A. Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models[J]. Applied Mathematical Modelling, 2016, 40(1): 542-564. doi: 10.1016/j.apm.2015.06.002 [18] 黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017. [19] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149 [20] Issa R, Luo J Y, Gosman D. Prediction of impeller induced flows in mixing vessels using multiple frames of reference[C]//4th European Conf on Mixing, IMechE Symposium Series No 136. Cambridge, UK: 1994. [21] 魏海鹏, 符松. 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34(4): 48-52. [22] Timothy Y, Michael M, Len I, et al. Investigation of cylinder planing on a flat free surface[C]//11th International Conference on Fast sea Transportation(FAST). Honolulu, Hawaii, USA: American Society of Naval Engineers, 2011. -