• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像轮廓特征的无人水面艇航海雷达目标检测修正方法

李立刚 李勃然 金久才 刘德庆 戴永寿

李立刚, 李勃然, 金久才, 刘德庆, 戴永寿. 基于图像轮廓特征的无人水面艇航海雷达目标检测修正方法[J]. 水下无人系统学报, 2022, 30(2): 190-196. doi: 10.11993/j.issn.2096-3920.2022.02.008
引用本文: 李立刚, 李勃然, 金久才, 刘德庆, 戴永寿. 基于图像轮廓特征的无人水面艇航海雷达目标检测修正方法[J]. 水下无人系统学报, 2022, 30(2): 190-196. doi: 10.11993/j.issn.2096-3920.2022.02.008
LI Li-gang, LI Bo-ran, JIN Jiu-cai, LIU De-qing, DAI Yong-shou. Target Detection and Correction Method for Unmanned Surface Vehicles Marine Radar Based on Image Contour Features[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 190-196. doi: 10.11993/j.issn.2096-3920.2022.02.008
Citation: LI Li-gang, LI Bo-ran, JIN Jiu-cai, LIU De-qing, DAI Yong-shou. Target Detection and Correction Method for Unmanned Surface Vehicles Marine Radar Based on Image Contour Features[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 190-196. doi: 10.11993/j.issn.2096-3920.2022.02.008

基于图像轮廓特征的无人水面艇航海雷达目标检测修正方法

doi: 10.11993/j.issn.2096-3920.2022.02.008
基金项目: 

中央高校基本科研业务费专项资助(19CX05003A-1).

国家重点研发计划(2017YFC1405203)

详细信息
    作者简介:

    李立刚(1976-),男,博士,副教授,主要研究方向为无人艇智能信息处理技术.

  • 中图分类号: U665.22;TJ630.6

Target Detection and Correction Method for Unmanned Surface Vehicles Marine Radar Based on Image Contour Features

  • 摘要: 航海雷达具有检测范围广、全天候工作等优点, 是无人水面艇障碍目标检测的主要手段。但是对于岛屿、货轮等大型目标, 航海雷达无法对其所在区域进行准确描述, 并且可能将其误判为多个分散的目标。为此, 文中结合雷达图像特点, 提出一种基于图像轮廓特征的航海雷达目标检测修正方法。首先对雷达图像进行预处理, 简化图像数据, 增强有关信息的可检测性。然后根据目标对应像素点坐标提取目标轮廓, 若不同目标对应同一轮廓, 则认为发生误判, 并将误判产生的多个分散目标合并为一个目标。最后借助目标轮廓包含的距离和方位特征参数对目标所在区域准确描述。试验测试结果表明, 该方法能有效解决大型目标误判问题, 并将航海雷达检测结果中的距离误差降低79%以上, 方位误差最大减少60%。

     

  • [1] 张磊,许劲松,秦操.无人船目标探测与跟踪系统[J].船舶工程, 2018, 40(8):56-60.

    Zhang Lei, Xu Jin-song, Qin Cao. Target Detection and Tracking System of Unmanned Surface Vehicles[J]. Ship Engineering, 2018, 40(8):56-60.
    [2] Han J, Cho Y, Kim J. Coastal SLAM with Marine Radar for USV Operation in GPS-Restricted Situations[J]. IEEE Journal of Oceanic Engineering, 2019, 44(2):300-309.
    [3] Muhovic J, Mandeljc R, Bovcon B, et al. Obstacle Tracking for Unmanned Surface Vessels Using 3-D Point Cloud[J]. IEEE Journal of Oceanic Engineering, 2019, 99:1-13.
    [4] 季勤超,赵建军,贺林波,等.舰船姿态测量误差对雷达探测精度的影响分析[J].计算机与数字工程, 2019, 47(2):330-333, 353.

    Ji Qin-chao, Zhao Jian-jun, He Lin-bo, et al. Analysis of Effects on Radar Detection Precision Caused by Ship Attitude Measurement Errors[J]. Computer&Digital Engineering, 2019, 47(2):330-333, 353.
    [5] Han J, Park J, Kim J, et al. GPS-less Coastal Navigation Using Marine Radar for USV Operation[J]. IFAC-Papers OnLine, 2016, 49(23):598-603.
    [6] 唐林,刘通.基于微多普勒效应的运动船舶目标分类研究[J].舰船科学技术, 2019, 41(4A):100-102.

    Tang Lin, Liu Tong. Research on Moving Ship Target Classification Based on Micro-Doppler Effect[J]. Ship Science and Technology, 2019, 41(4A):100-102.
    [7] Almeida C, Franco T, Ferreira H, et al. Radar Based Collision Detection Developments on USV ROAZ II[C]//Oceans 2009-Europe, Bremen:IEEE, 2009:1-6.
    [8] Zhuang J Y, Zhang L, Zhao S Q, et al. Radar-based Collision Avoidance for Unmanned Surface Vehicles[J]. China Ocean Engineering, 2016, 30(6):867-883.
    [9] 庄佳园,苏玉民,廖煜雷,等.基于航海雷达的水面无人艇局部路径规划[J].上海交通大学学报, 2012, 46(9):1371-1375.

    Zhuang Jia-yuan, Su Yu-min, Liao Yu-lei, et al. Unmanned Surface Vehicle Local Path Planning Based on Marine Radar[J]. Journal of Shanghai Jiaotong University, 2012, 46(9):1371-1375.
    [10] Ji X, Zhuang J Y, Su Y M. Marine Radar Target Detection for USV[J]. Advanced Materials Research, 2014, 1006-1007:863-869.
    [11] Liu J, Hu B, Wang Y. G. Optimum Adaptive Array Stochastic Resonance in Noisy Grayscale Image Restoration[J]. Physics Letters A, 2019, 383(13):1457-1465.
    [12] Guo J B, He C J, Zhang X T. Nonlinear Edge-Preserving Diffusion with Adaptive Source for Document Images Binarization[J]. Applied Mathematics and Computation, 2019, 351:8-22.
    [13] 王云艳,周志刚,罗冷坤.基于Sobel算子滤波的图像增强算法[J].计算机应用与软件, 2019, 36(12):184-188.

    Wang Yun-yan, Zhou Zhi-gang, Luo Leng-kun. Operator Filtering[J]. Computer Applications and Software, 2019, 36(12):184-188.
    [14] 王旭旺,王凡.基于全球IGS站坐标的Google Earth地图精度分析[J].测绘通报, 2019(S1):18-21.

    Wang Xu-wang, Wang Fan. Precision Analysis of Google Earth Map Based on the Coordinates of Global IGS Stations[J]. Bulletin of Surveying and Mapping, 2019(S1):18-21.
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-01
  • 网络出版日期:  2022-07-16

目录

    /

    返回文章
    返回
    服务号
    订阅号