• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超空泡航行器滑行力模型分析与改进

周瑜 孙明玮 张建宏 刘乐华 陈增强

周瑜, 孙明玮, 张建宏, 刘乐华, 陈增强. 超空泡航行器滑行力模型分析与改进[J]. 水下无人系统学报, 2022, 30(2): 157-164. doi: 10.11993/j.issn.2096-3920.2022.02.003
引用本文: 周瑜, 孙明玮, 张建宏, 刘乐华, 陈增强. 超空泡航行器滑行力模型分析与改进[J]. 水下无人系统学报, 2022, 30(2): 157-164. doi: 10.11993/j.issn.2096-3920.2022.02.003
ZHOU Yu, SUN Ming-wei, ZHANG Jian-hong, LIU Le-hua, CHEN Zeng-qiang. Analysis and Improvement of Supercavity Vehicle Planing Force Model[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 157-164. doi: 10.11993/j.issn.2096-3920.2022.02.003
Citation: ZHOU Yu, SUN Ming-wei, ZHANG Jian-hong, LIU Le-hua, CHEN Zeng-qiang. Analysis and Improvement of Supercavity Vehicle Planing Force Model[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 157-164. doi: 10.11993/j.issn.2096-3920.2022.02.003

超空泡航行器滑行力模型分析与改进

doi: 10.11993/j.issn.2096-3920.2022.02.003
基金项目: 

51777013).

国家自然科学基金项目(62073177

61973175

详细信息
    作者简介:

    周瑜(1996-),男,在读硕士,主要研究方向为超空泡航行器建模与控制.

  • 中图分类号: TJ630.1;U661.1

Analysis and Improvement of Supercavity Vehicle Planing Force Model

  • 摘要: Dzielski基准模型和扩展模型被广泛应用于超空泡航行器控制问题的研究, 但对此类模型之间的差异性与合理性的综合分析较少。针对此, 文中首先通过数值仿真得到Dzielski基准模型和扩展模型的状态响应与滑行力变化曲线, 对比分析了此类模型间的差异性与合理性。仿真结果表明, 空泡记忆效应会引起滑行力峰值的降低, 空泡偏移会轻微影响空泡与航行器的碰撞时间和滑行力的大小。其次, 对Balas模型中不合理的滑行力计算公式进行了改进。最后, 在Mao模型的基础上, 提出了一种新的模型, 并仿真验证了所提模型的合理性。文中研究可为后续超空泡航行器控制系统设计提供参考。

     

  • [1] 王改娣.超空泡鱼雷技术特点分析[J].鱼雷技术, 2007, 15(5):2-4.

    Wang Gai-di. Analysis of Technical Features of Supercavitating Torpedoes[J]. Torpedo Technology, 2007, 15(5):2-4.
    [2] 张珂,李鹏,王志,等.超空泡航行体尾部滑行力实验研究[J].船舶力学, 2020, 24(1):8-17.

    Zhang Ke, Li Peng, Wang Zhi, et al. Experimental Study of Planing Force on Supercavitating Vehicle Tail[J]. Jou-rnal of Ship Mechanics, 2020, 24(1):8-17.
    [3] 庞爱平,何朕,钞凡,等.超空泡航行体时滞特性分析[J].控制工程, 2019, 26(12):2241-2245.

    Pang Ai-ping, He Zhen, Chao Fan, et al. Time Delay Analysis for Supercavitating Vehicles[J]. Control Engi-neering of China, 2019, 26(12):2241-2245.
    [4] Dzielski J, Kurdila A. A Benchmark Control Problem for Supercavitating Vehicles and an Initial Investigation of Solutions[J]. Journal of Vibration and Control, 2003, 9(7):791-804.
    [5] 刘伟,范辉,吕建国,等.超高速水下航行器控制方法研究热点综述[J].水下无人系统学报, 2019, 27(4):369-378.

    Liu Wei, Fan Hui, Lü Jian-guo, et al. Review of Research Hotspots of Superspeed Undersea Vehicle Control Methods[J]. Journal of Unmanned Undersea Systems, 2019, 27(4):369-378.
    [6] Mao X, Wang Q. Nonlinear Control Design for a Supercavitating Vehicle[J]. IEEE Transactions on Control Sys-tems Technology, 2009, 17(4):816-832.
    [7] Balas G J, Bokor J, Vanek B, et al. Control of High-Speed Underwater Vehicles[M]//Control of Uncertain Systems:Modelling, Approximation and Design. Berlin Heidelberg:Springer-Verlag, 2006:25-44.
    [8] 吕瑞,魏英杰,于开平,等.超空泡航行体的增益自适应全程滑模控制器设计[J].振动与冲击, 2011, 30(3):34-37.

    Lü Rui, Wei Ying-jie, Yu Kai-ping, et al. Design of Gain Adaptive Global Sliding Mode Controller for Supercavitating Vehicle[J]. Journal of Vibration and Shock, 2011, 30(3):34-37.
    [9] 王京华,魏英杰,于开平,等.基于空泡记忆效应的水下超空泡航行体建模与控制[J].振动与冲击, 2010, 29(8):160-163.

    Wang Jing-hua, Wei Ying-jie, Yu Kai-ping, et al. Modeling and Control of Underwater Supercavitating Vehicle Based on Memory Effect of Cavity[J]. Journal of Vibration and Shock, 2010, 29(8):160-163.
    [10] 李阳,刘明雍,张小件.基于自适应RBF神经网络的超空泡航行体反演控制[J].自动化学报, 2020, 46(4):734-743.

    Li Yang, Liu Ming-yong, Zhang Xiao-jian. Adaptive RBF Neural Network Based Backstepping Control for Supercavitating Vehicles[J]. Acta Automatica Sinica, 2020, 46(4):734-743.
    [11] 韩云涛,程章龙,李盼盼,等.超空泡航行体LPV鲁棒变增益控制[J].华中科技大学学报, 2017, 45(7):127-132.

    Han Yun-tao, Cheng Zhang-long, Li Pan-pan, et al. Robust Variable Gain Control for Supercavitating Vehicles Base on LPV[J]. Journal Huazhong University of Science&Technology, 2017, 45(7):127-132.
    [12] Zhao X, Ye X, Liu Y, et al. Boundary Sliding Mode Controller Design for Supercavitating Vehicles[C]//Procee-dings of 2017 IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan:IEEE, 2017, 1245-1249.
    [13] Wang J, Liu Y, Cao G, et al. Design of RBF Adaptive Sliding Mode Controller for Supercavitating Vehicle[J]. IEEE Access (2169-3536), 2021, 9:1-11.
    [14] 韩云涛,许振,白涛,等.基于时滞特性的超空泡航行体预测控制[J].华中科技大学学报, 2020, 48(7):52-57.

    Han Yun-tao, Xu Zhen, Bai Tao, et al. Predictive Control of Supercavitating Vehicle Based on Time Delay Characteristics[J]. Journal Huazhong University of Science&Technology, 2020, 48(7):52-57.
    [15] Guo J, Balachandran B, Abed E H. Dynamics and Control of Supercavitating Vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2):1-11.
    [16] 宋书龙,万亚民,李建辰,等.一种基于独立膨胀原理的三维超空泡形态计算方法[J].水下无人系统学报, 2019, 27(1):51-58.

    Song Shu-long, Wan Ya-min, Li Jian-chen, et al. A Calculation Method of Three-Dimensional Supercavity Shape Based on the Principle of Independent Expansion[J]. Jo-urnal of Unmanned Undersea Systems, 2019, 27(1):51-58.
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 网络出版日期:  2022-07-16

目录

    /

    返回文章
    返回
    服务号
    订阅号