• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反UUV探测声呐系统发展综述

兰同宇 刘本奇 刘亮

兰同宇, 刘本奇, 刘亮. 反UUV探测声呐系统发展综述[J]. 水下无人系统学报, 2022, 30(6): 704-713 doi: 10.11993/j.issn.2096-3920.2022-0033
引用本文: 兰同宇, 刘本奇, 刘亮. 反UUV探测声呐系统发展综述[J]. 水下无人系统学报, 2022, 30(6): 704-713 doi: 10.11993/j.issn.2096-3920.2022-0033
LAN Tong-yu, LIU Ben-qi, LIU Liang. Review on Anti-UUV Detection Sonar System[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 704-713. doi: 10.11993/j.issn.2096-3920.2022-0033
Citation: LAN Tong-yu, LIU Ben-qi, LIU Liang. Review on Anti-UUV Detection Sonar System[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 704-713. doi: 10.11993/j.issn.2096-3920.2022-0033

反UUV探测声呐系统发展综述

doi: 10.11993/j.issn.2096-3920.2022-0033
详细信息
    作者简介:

    兰同宇(1996-), 男, 硕士, 助理工程师, 主要研究方向为水声信号处理

  • 中图分类号: TJ67; TB566

Review on Anti-UUV Detection Sonar System

  • 摘要: 无人水下航行器(UUV)可承担多种水下特种作战任务。近年来, 敌方UUV给我国港口和海岸关键设施造成严重威胁。反UUV探测声呐是实现对敌方UUV入侵预警, 保护港口、海岸安全的重要手段。文中简要分析了UUV的特征及其探测难点, 介绍了国外利用蛙人探测声呐系统、海岸监视声呐系统实现UUV探测的研究现状, 并总结了目前反UUV探测声呐系统的关键技术、主要问题和发展方向, 可以为行业内反UUV探测声呐系统的研究提供参考。

     

  • 图  1  无人水下航行器Remus 100

    Figure  1.  UUV Remus 100

    图  2  檀香山试验Remus100辐射声谱级指向性图

    Figure  2.  Directivity diagram of radiation sound spectrum level of Remus100 in Honolulu Harbor test

    图  3  AN/WQX-2声呐自动跟踪和分类UUV

    Figure  3.  Automated tracking and classification of UUVs utilizing AN/WQX-2

    图  4  DDS 9000与Defender II自动探测跟踪软件示意图

    Figure  4.  Schematic diagram of DDS 9000 and Defender II automated detection and tracking software

    图  5  SeaShield远程沿海监视声呐系统

    Figure  5.  SeaShield long range underwater coastal surveillance system

    图  6  “水盾”DDS

    Figure  6.  AquaShield DDS

    图  7  “尖盾”便携式 DDS

    Figure  7.  PointShield Portable DDS

    图  8  “骑士盾”DDS工作示意图

    Figure  8.  KnightShield DDS working diagram

    表  1  水下武器声源级对比

    Table  1.   Comparison of the sound source levels of underwater weapons

    武器类型声源级/dB备注
    蛙人开式呼吸161
    全闭式呼吸131
    半闭式呼吸108
    潜艇噪音型155航速4 kn
    安静型135
    战舰165航速20 kn
    下载: 导出CSV
  • [1] Khawaja W, Semkin V, Ratyal N I, et al. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles[J]. Sensors, 2022, 22(10): 3896. doi: 10.3390/s22103896
    [2] Railey K E. Demonstration of Passive Acoustic Detection and Tracking of Unmanned Underwater Vehicles[D]. USA: Massachusetts Institute of Technology, 2018.
    [3] ONR. Department of the Navy(DoN) 15.2 Small Business Innovation Research(SBIR) Proposal Submission Instruc- tions[R]. USA: Office of Naval Research(ONR), 1982.
    [4] 李晓东, 胡光兰, 吴晓婧. 美国无人潜航器反制措施研究现状[J]. 数字海洋与水下攻防, 2020, 3(3): 198-203. doi: 10.19838/j.issn.2096-5753.2020.03.004

    Li Xiao-dong, Hu Guang-lan, Wu Xiao-jing. Status Quo of U. S. Counter-UUV Studies[J]. Digital Ocean and Underwater Warfare, 2020, 3(3): 198-203. doi: 10.19838/j.issn.2096-5753.2020.03.004
    [5] 张洪岩. 水下小型UUV辐射噪声特征提取技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [6] Holmes J D, Carey W M, Lynch J F. An Overview of Unmanned Underwater Vehicle Noise in the Low to Mid Frequencies Bands[C]//Proceedings of Meetings on Acoustics. USA: Acoustical Society of America, 2010.
    [7] Gebbie J, Siderius M, Allen J S. Aspect-dependent Radiated Noise Analysis of an Underway Autonomous Underwater Vehicle[J]. Journal of the Acoustical Society of America, 2012, 132(5): EL351-EL357. doi: 10.1121/1.4754419
    [8] 孙玉臣, 王德石, 李宗吉, 等. 蛙人探测声呐系统发展综述[J]. 水下无人系统学报, 2021, 29(5): 509-523.

    Sun Yu-chen, Wang De-shi, Li Zong-ji, et al. Review of Diver Detection Sonar System[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 509-523.
    [9] Radford C A, Jeffs A G, Tindle C T, et al. Bubbled Waters: The Noise Generated by Underwater Breathing Apparatus[J]. Marine and Freshwater Behaviour and Physiology, 2005, 38(4): 259-267. doi: 10.1080/10236240500333908
    [10] 高学强, 杨日杰. 潜艇辐射噪声声源级经验公式修正[J]. 声学与电子工程, 2007(3): 17-18, 21.
    [11] Urick R J. 水声原理[M]. 洪申, 译. 3 版. 哈尔滨: 哈尔滨船舶工程学院出版社, 1990.
    [12] 聂东虎, 乔钢, 朱知萌, 等. 水下蛙人主被动探测实验研究[J]. 声学技术, 2015, 34(4): 300-303. doi: 10.16300/j.cnki.1000-3630.2015.04.002

    Nie Dong-hu, Qiao Gang, Zhu Zhi-meng, et al. Experimental Research of Passive and Active Detection for Underwater Diver[J]. Technical Acoustics, 2015, 34(4): 300-303. doi: 10.16300/j.cnki.1000-3630.2015.04.002
    [13] 王琦, 范军, 王斌. 闭式蛙人目标强度预报及试验[J]. 声学技术, 2022, 41(2): 173-179. doi: 10.16300/j.cnki.1000-3630.2022.02.004

    Wang Qi, Fan Jun, Wang Bin. Target Strength of Closed frogman: Measurements and Modeling[J]. Technical Acoustics, 2022, 41(2): 173-179. doi: 10.16300/j.cnki.1000-3630.2022.02.004
    [14] 许钢灿, 倪东波, 郭建. 反蛙人声呐系统发展综述[J]. 中国安全防范技术与应用, 2018(5): 13-18. doi: 10.3969/j.issn.1672-1470.2018.05.003
    [15] 黄颖淞, 葛辉良, 王付印, 等. 蛙人探测声呐系统发展综述[J]. 水下无人系统学报, 2020, 28(1): 1-9.

    Huang Yin-song, Ge Hui-liang, Wang Fu-yin, et al. Review on the Development of Diver Detection Sonar System[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 1-9.
    [16] Physical Security Enterprise & Analysis Group. Automated Tracking and Classification of UUVs Utilizing AN/WQX-2[EB/OL]. [2016-05-24]. https://www.acq.osd.mil/ncbdp/nm/pseag/Automated%20Tracking%20and%20Classification%20of%20UUVs%20Utilizing%20ANWQX-2.html.
    [17] DSIT. SeaShield Underwater Coastal Surveillance System[EB/OL].[2014-10-6]. https://www.naval-technology.com/products/seashield-underwater-coastal-surveillance-system/#dsit.
    [18] STILETTO Maritime Demonstration Program. CounterUnmanned Undersea Vehicle(C-UUV) Capability Demonstration[EB/OL].[2016-09-04]. https://govtribe.com/opportunity/federal-contract-opportunity/stilettomaritime-demonstration-program-counter-unmanned-undersea-vehicle-c-uuv-capability-demonstration-cd171.
    [19] 孙超, 刘雄厚. MIMO声呐: 概念与技术特点探讨[J]. 声学技术, 2012, 31(2): 117-124. doi: 10.3969/j.issn1000-3630.2012.02.002

    Sun Chao, Liu Xiong-hou. MIMO Sonar: Concept and Technical Characteristic Discuss[J]. Technical Acoustics, 2012, 31(2): 117-124. doi: 10.3969/j.issn1000-3630.2012.02.002
    [20] The Hidden Threat Facing Military & Civilian Ports[EB/OL].[2009-08-24]. http://ccom-pr.com/wp-content/uploads/underwater-july-august-091.pdf.
    [21] Gross P, Andrew P. The Application of Sector Scanning Sonar and Multibeam Imaging Sonar for Underwater Security[C]//Oceans 2007. Vancouver, BC, Canada: IEEE, 2007: 1-7.
    [22] Meecham A, Acker T W. Underwater Threat Detection and Tracking Using Multiple Sensors and Advanced Proce- ssing[J]. The Journal of the Acoustical Society of America, 2016, 140(4): 3349-3349.
    [23] Felber F. Extended Intruder Detection to Counter Advanced Underwater Threats in Ports and Harbors[C]//2018 IEEE International Symposium on Technologies for Homeland Security(HST). Woburn, MA, USA: IEEE, 2018: 1-5.
    [24] Sutin A, Bunin B, Sedunov A, et al. Stevens Passive Acoustic System for Underwater Surveillance[C]//2010 International WaterSide Security Conference. Carrara, Italy: IEEE, 2010.
    [25] Fillinger L, De Theije P, Zampolli M, et al. Towards a Passive Acoustic Underwater System for Protecting Harbours against Intruders[C]//2010 International WaterSide Security Conference. Carrara, Italy: IEEE, 2010.
    [26] Sutin A, Salloum H, DeLorme M, et al. Stevens Passive Acoustic System for Surface and Underwater Threat Detection[C]//2013 IEEE International Conference on Technologies for Homeland Security(HST). Waltham, MA, USA: IEEE, 2013: 195-200.
    [27] Yang T C, Schindall J, Huang C F, et al. Clutter Reduction Using Doppler Sonar in a Harbor Environment[J]. The Journal of the Acoustical Society of America, 2012, 132(5): 3053-3067. doi: 10.1121/1.4756921
    [28] 周胜增, 杜选民. 利用正弦调频信号的宽带速度敏感特性抑制混响[J]. 声学学报, 2022, 47(1): 16-26. doi: 10.15949/j.cnki.0371-0025.2022.01.00

    Zhong Sheng-Zeng, Du Xuan-Min. Reverberation Suppression by Utilizing Wideband Speed Sensitive Characteristic of Sinusoidal Frequency Modulation Signal[J]. Chinese Journal of Acoustics, 2022, 47(1): 16-26. doi: 10.15949/j.cnki.0371-0025.2022.01.00
    [29] Nõmm M. Sonar Signal Design and Evaluation with Emphasis on Diver Detection[D]. Germany: Christian-Albrechts Universität Kiel, 2015.
    [30] 陈桥, 童宁宁, 丁珊珊, 等. 基于正负线性调频信号的压缩感知波形分离方法[J]. 弹箭与制导学报, 2019, 39(4): 37-40, 44. doi: 10.15892/j.cnki.djzdxb.2019.04.010

    Chen Qiao, Tong Ning-ning, Ding Shan-shan, et al. CS-based Waveform-separation Method Based on Positive and Negative Linear Frequency Modulation Signal[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(4): 37-40, 44. doi: 10.15892/j.cnki.djzdxb.2019.04.010
    [31] 张杨梅. 水下小目标主动探测关键技术研究[D]. 西安: 西北工业大学, 2017.
    [32] 范威, 朱代柱, 张德泽, 等. 混合高斯模型和Radon变换用于声呐图像背景抑制[J]. 水下无人系统学报, 2018, 26(5): 492-497.

    Fan Wei, Zhu Dai-zhu, Zhang De-ze, et al. Mixed Gaussian Model and RADON Transformation are Used for Sound Image Background Suppression[J]. Journal of Unmanned Underwater Systems, 2018, 26(5): 492-497.
    [33] 徐琰锋, 潘谢帆, 刘本奇. 混响环境下基于频率-波数谱分析的水下慢速目标回波检测方法[J]. 兵工学报, 2020, 41(9): 1880-1886. doi: 10.3969/j.issn.1000-1093.2020.09.020

    Xu Yan-feng, Pan Xie-fan, Liu Ben-qi. Detection Method for Underwater Slow Moving Targets Based on Frequency-wavenumber Spectrum Analysis in Reverberation Environment[J]. Acta Armamentarii, 2020, 41(9): 1880-1886. doi: 10.3969/j.issn.1000-1093.2020.09.020
    [34] 斯佳成, 邓红超. 基于声呐历程累积图像的弱回波目标检测方法[J]. 声学技术, 2022, 41(1): 144-148. doi: 10.16300/j.cnki.1000-3630.2022.01.021

    Si Jia-cheng, Deng Hong-chao. Detection of Weak Echo Targets Based on Sonar History Accumulative Image[J]. Technical Acoustics, 2022, 41(1): 144-148. doi: 10.16300/j.cnki.1000-3630.2022.01.021
    [35] 郝程鹏, 施博, 闫晟, 等. 主动声呐混响抑制与目标检测技术[J]. 科技导报, 2017, 35(20): 102-108.

    Hao Cheng-peng, Shi Bo, Yan Sheng, et al. Reverberation Suppression and Target Detection for Active Sonar[J]. Science & Technology Review, 2017, 35(20): 102-108.
    [36] 杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-387.

    Yang Yi-xin, Han Yi-na, Zhao Rui-qin, et al. The Current Status and Development Trend of the Detection Technology of Marine Acoustic Goals[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-387.
    [37] 王冠群, 张春华, 尹力, 等. 联合多站阵元域数据的水下目标检测与跟踪[J]. 声学学报, 2019, 44(4): 491-502. doi: 10.15949/j.cnki.0371-0025.2019.04.010

    Wang Guan-qun, Zhang Chun-hua, Yin Li, et al. Underwater Target Detection and Tracking Based on Array Element Domain Data from Multi-arrays[J]. Acta Acustica, 2019, 44(4): 491-502. doi: 10.15949/j.cnki.0371-0025.2019.04.010
    [38] 王剑书. 高分辨波达方向估计与宽带波束形成研究[D]. 西安: 西北工业大学, 2019 .
    [39] 黄海宁, 李宇. 水声目标探测技术研究现状与展望[J]. 中国科学院院刊, 2019, 34(3): 264-271. doi: 10.16418/j.issn.1000-3045.2019.03.003

    Huang Hai-ning, Li Yu. Current Situation and Prospect of Underwater Acoustic Target Detection Technology[J]. Journal of the Chinese Academy of Sciences, 2019, 34(3): 264-271. doi: 10.16418/j.issn.1000-3045.2019.03.003
    [40] 李晖宙, 刘正红, 毛盾. 基于蛙人探测声呐序列图像的水下小目标跟踪算法[J]. 舰船电子工程, 2018, 38(2): 26-30, 34.

    Li Hui-zhou, Liu Zheng-hong, Mao Dun. Underwater Small Target Tracking Algorithm Based on Diver Detection Sonar Image Sequences[J]. Ship Electronic Engineering, 2018, 38(2): 26-30, 34.
    [41] Jahan K, Rao S K. Implementation of Underwater Target Tracking Techniques for Gaussian and Non-Gaussian Environments[J]. Computers & Electrical Engineering, 2020, 87: 106783.
    [42] Liu B, Tang X, Tharmarasa R, et al. Underwater Target Tracking in Uncertain Multipath Ocean Environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4899-4915. doi: 10.1109/TAES.2020.3003703
    [43] 刘妹琴, 韩学艳, 张森林, 等. 基于水下传感器网络的目标跟踪技术研究现状与展望[J]. 自动化学报, 2021, 47(2): 235-251. doi: 10.16383/j.aas.c190886

    Liu Mei-qin, Han Xue-yan, Zhang Sen-lin, et al. The Current Status and Outlook of Target Tracking Technology Based on Underwater Sensor Network[J]. Automatic Chemistry Journal, 2021, 47(2): 235-251. doi: 10.16383/j.aas.c190886
    [44] 张思宇, 何心怡, 张驰, 等. 水下多目标跟踪技术现状与展望[J]. 水下无人系统学报, 2018, 26(6): 511-520.

    Zhang Si-yu, He Xin-yi, Zhang Chi, et al. Multi-target Tracking Technical Status and Outlook for Underwater[J]. Journal of Unmanned Undersea Systems, 2018, 26(6): 511-520.
    [45] 李羿萱, 杜选民, 周胜增, 等. 多目标干扰环境中威胁目标自动跟踪方法[J]. 舰船科学技术, 2021, 43(3): 172-175. doi: 10.3404/j.issn.1672-7649.2021.02.035

    Li Yi-xuan, Du Xuan-min, Zhou Sheng-zheng, et al. Multi-target Interference in the Environment of Threat Target Automatic Tracking Method[J]. Ship Science and Technology, 2021, 43(3): 172-175. doi: 10.3404/j.issn.1672-7649.2021.02.035
    [46] 郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906-922. doi: 10.13195/j.kzyjc.2017.1678

    Guo Ge, Wang Xing-kai, Xu Hui-mu. Review on Underwater Target Detection, Recognition and Tracking Based on Sonar Image[J]. Control and Decision, 2018, 33(5): 906-922. doi: 10.13195/j.kzyjc.2017.1678
    [47] 方世良, 杜栓平, 罗昕炜, 等. 水声目标特征分析与识别技术[J]. 中国科学院院刊, 2019, 34(3): 297-305. doi: 10.16418/j.issn.1000-3045.2019.03.007

    Fang Shi-liang, Du Shuan-ping, Luo Xin-wei, et al. Analysis and Identification Technology of Water Sound Target Features[J]. College of Chinese Academy of Sciences, 2019, 34(3): 297-305. doi: 10.16418/j.issn.1000-3045.2019.03.007
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3465
  • HTML全文浏览量:  41
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-10-12
  • 录用日期:  2022-10-14
  • 网络出版日期:  2022-12-13

目录

    /

    返回文章
    返回
    服务号
    订阅号