• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型仿生水-空跨介质航行器结构设计

李宏源 吕凯 陈迎亮 朱敏 吕鹏宇 段慧玲

李宏源, 吕凯, 陈迎亮, 等. 新型仿生水-空跨介质航行器结构设计[J]. 水下无人系统学报, 2022, 30(6): 726-732 doi: 10.11993/j.issn.2096-3920.2022-0024
引用本文: 李宏源, 吕凯, 陈迎亮, 等. 新型仿生水-空跨介质航行器结构设计[J]. 水下无人系统学报, 2022, 30(6): 726-732 doi: 10.11993/j.issn.2096-3920.2022-0024
LI Hong-yuan, LÜ Kai, CHEN Ying-liang, ZHU Min, LÜ Peng-yu, DUAN Hui-ling. Structure Design of A Novel Bionic Water-air Cross-Domain Vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024
Citation: LI Hong-yuan, LÜ Kai, CHEN Ying-liang, ZHU Min, LÜ Peng-yu, DUAN Hui-ling. Structure Design of A Novel Bionic Water-air Cross-Domain Vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 726-732. doi: 10.11993/j.issn.2096-3920.2022-0024

新型仿生水-空跨介质航行器结构设计

doi: 10.11993/j.issn.2096-3920.2022-0024
基金项目: 国家自然科学基金项目资助(11988102, U2141251, 11872004, 91848201)
详细信息
    作者简介:

    李宏源(1989-), 男, 博士, 助理研究员, 主要研究方向为水空跨介质航行器研制、流固耦合力学、水下航行器减阻技术

  • 中图分类号: U674.941; V279

Structure Design of A Novel Bionic Water-air Cross-Domain Vehicle

  • 摘要: 近年来, 水-空跨介质航行器因具有立体跨域优势而成为研究热点, 但水-空跨介质航行器平台总体的现有设计水平阻碍了其在实际复杂环境中的推广和应用。文中基于仿生变体技术, 提出一种新型仿生水-空跨介质航行器结构。针对航行器外形特点, 设计了2对变体水翼和折叠空翼, 并开发出变体执行机构, 以实现水翼、空翼的展开和收缩。为保证该航行器在多模态下的优良性能, 对其在水下、水面和空中模态的水动力性能和气动性能进行了计算流体动力学数值仿真研究。结果表明, 该航行器不仅可实现水下定深潜行、水面高速航行以及空中定高飞行的跨域作业, 而且兼具水下隐蔽性和空中机动性等优势。

     

  • 图  1  水-空跨介质航行器仿生结构设计图

    Figure  1.  Bionics design diagrams of water-air cross-domain vehicles

    图  2  水-空跨介质航行器整体布局

    Figure  2.  Overall layout of a water-air cross-domain vehicle

    图  3  AG24翼型曲线

    Figure  3.  Airfoil curve of AG24

    图  4  水翼变体机构设计原理图

    Figure  4.  Schematic diagram of hydrofoil variant mechanism

    图  5  空翼及螺旋桨展开状态示意图

    Figure  5.  Expansion state of air wings and propellers

    图  6  空翼折叠机构设计方案

    Figure  6.  Schematic diagram of air wings folding mechanism

    图  7  空翼及螺旋桨折叠状态概念模型

    Figure  7.  Conceptual model of air wings and propellers in folding state

    图  8  航行器以5 kn速度水下航行时的阻力曲线

    Figure  8.  Drag force curves of the vehicle when running underwater at the speed of 5 kn

    图  9  水下航行时航行器表面总压

    Figure  9.  The total pressure on the surface of the vehicle when running underwater

    图  10  航行器艇体附近流线

    Figure  10.  Streamlines near the vehicle

    图  11  航行器以不同航速水面巡航时阻力和升阻比曲线

    Figure  11.  Curves of the drag force and the lift-drag ratio of vehicle sailing on the surface at different speeds

    图  12  水-空跨介质航行器空中飞行时升阻力变化曲线

    Figure  12.  Lift force and drag force curves of the water-air cross-domain vehicle during air flight

    图  13  航行器空中飞行时附近流线

    Figure  13.  Streamlines of vehicle during air flight

    图  14  翼梢周围流线

    Figure  14.  Streamlines near the wingtips

  • [1] 李宏源, 吕鹏宇, 杜增智, 等. 水下滑移边界减阻技术研究综述[J]. 舰船科学技术, 2022, 44(9): 1-6. doi: 10.3404/j.issn.1672-7649.2022.09.001

    Li Hong-yuan, Lü Peng-yu, Du Zeng-zhi, et al. A Review of Drag Reduction Technology for Underwater Slip Boundary[J]. Ship Science and Technology, 2022, 44(9): 1-6. doi: 10.3404/j.issn.1672-7649.2022.09.001
    [2] 刘华欣. 仿生跨介质航行器机理研究及原型机工程[D]. 北京: 北京航空航天大学, 2009.
    [3] 裴譞, 张宇文, 李闻白, 等. 跨介质飞行器气/水两相弹道仿真研究[J]. 工程力学, 2010, 27(8): 223-228.

    Pei Xuan, Zhang Yu-wen, Li Wen-bai, et al. Simulation and Analysis on the Gas/water Two-phase Ballistics of Trans-media Aircraft[J]. Engineering Mechanics, 2010, 27(8): 223-228.
    [4] 裴譞, 张宇文, 王银涛, 等. 两栖UAV 滑跳动力学特性仿真研究[J]. 计算力学学报, 2011, 28(2): 173-177. doi: 10.7511/jslx201102003

    Pei Xuan, Zhang Yu-wen, Wang Yin-tao, et al. Simulation and Analysis of Slide Jump Dynamic Characteristic of the Amphibious UAV[J]. Journal of Computational Mechanics, 2011, 28(2): 173-177. doi: 10.7511/jslx201102003
    [5] 裴譞, 张宇文, 袁绪龙, 等. 两栖UAV 动力学建模与仿真[J]. 火力与指挥控制, 2011, 36(1): 10-13. doi: 10.3969/j.issn.1002-0640.2011.01.003

    Pei Xuan, Zhang Yu-wen, Yuan Xu-long, et al. Dynamic Modeling and Simulation of Trans-media Aircraft System[J]. Fire Control & Command Control, 2011, 36(1): 10-13. doi: 10.3969/j.issn.1002-0640.2011.01.003
    [6] 王伟, 张宇文, 朱灼. 跨介质飞行器弹道仿真分析[J]. 计算机仿真, 2012, 28(12): 1-4. doi: 10.3969/j.issn.1006-9348.2012.12.001

    Wang Wei, Zhang Yu-wen, Zhu Zhuo. Simulation and Analysis on Ballistic Ttrajectory of Trans-media Aircraft[J]. Computer Simulation, 2012, 28(12): 1-4. doi: 10.3969/j.issn.1006-9348.2012.12.001
    [7] 朱莎. 水空两用无人机动力系统设计与研究[D]. 南昌: 南昌航空大学, 2012.
    [8] 刘伟. 潜水飞机总体设计与气动外形结构设计分析[D]. 南昌: 南昌航空大学, 2012.
    [9] Yang X B, Wang T M, Liang J H, et al. Submersible Unmanned Aerial Vehicle Concept Design Study[C]//Aviation Technology, Integration, and Operations Conference. Reston, USA: AIAA, 2013: 1-12.
    [10] Du H, Fan G, Yi J. Autonomous Takeoff Control System Design for Unmanned Seaplanes[J]. Ocean Engineering, 2014, 85: 21-31. doi: 10.1016/j.oceaneng.2014.04.003
    [11] Lu D, Xiong C, Zeng Z, et al. A Multimodal Aerial Underwater Vehicle with Extended Endurance and Capabilities[C]// 2019 International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019: 4674-4680.
    [12] Lyu C X, Lu D, Xiong C K, et al. Toward a Giding Hybrid Aerial Underwater Vehicle: Design, Fabrication, and Experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063
    [13] Lu D, Guo Y, Xiong C, et al. Takeoff and Landing Control of a Hybrid Aerial Underwater Vehicle on Disturbed Water’s Surface[J]. IEEE Journal of Oceanic Engineering, 2022, 47(2): 295-311. doi: 10.1109/JOE.2021.3124515
    [14] Hu R, Lu D, Xiong C K, et al. Modeling, Characterization and Control of a Piston-driven Buoyancy System for a Hybrid Aerial Underwater Vehicle[J]. Applied Ocean Research, 2022: 120.
    [15] Eubank R D, Atkins E M. Unattended Autonomous Mission and System Management of an Unmanned Seaplane[C]//InfoTech and Aerospace. Reston, USA: AIAA, 2011: 1-12.
    [16] Eubank R D. Autonomous Flight, Fault, and Energy Management of the Flying Fish Solar-powered Seaplane[D]. Ann Arbor, USA: University of Michigan, 2012.
    [17] Eubank R D, Bradley J M, Atkins E M. Energy-aware Multiflight Planning for an Unattended Seaplane: Flying Fish[J]. Journal of Aerospace Information Systems, 2016, 14(2): 1-19.
    [18] Costa D, Palmieri G, Palpacelli M C, et al. Design of a Bio-Inspired Autonomous Underwater Robot[J]. Journal of Intelligent & Robotic Systems, 2017, 91(2): 181-192.
    [19] Gao A, Techet A H. Design Considerations for a Robotic Flying Fish[C]//Oceans. Piscataway, USA: IEEE, 2011: 1-8.
    [20] Lock R J, Vaidyanathan R, Burgess S C, et al. Development of a Biologically Inspired Multi-modal Wing Model for Aerialaquatic Robotic Vehicles[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE, 2010.
    [21] Lock R J. A Biologically-inspired Multi-modal Wing for Aerialaquatic Robotic Vehicles[D]. Bristol, UK: University of Bristol, 2011.
    [22] Siddall R, Kovac M. Fast Aquatic Escape with a Jet Thruster[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 217-226. doi: 10.1109/TMECH.2016.2623278
    [23] Zufferey R, Ancel O, Farinha A, et al. Consecutive Aquatic Jump-gliding with Water-reactive Fuel[J]. Science Robotics, 2019, 4(34): 7330. doi: 10.1126/scirobotics.aax7330
  • 加载中
图(14)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  30
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-08-27
  • 录用日期:  2022-08-30

目录

    /

    返回文章
    返回
    服务号
    订阅号