• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工作深度对水下滑翔机运动状态影响研究

叶效伟 刘艳敏 张文忠 刘一夫 姚志崇

叶效伟, 刘艳敏, 张文忠, 等. 工作深度对水下滑翔机运动状态影响研究[J]. 水下无人系统学报, 2022, 30(5): 597-604 doi: 10.11993/j.issn.2096-3920.202104016
引用本文: 叶效伟, 刘艳敏, 张文忠, 等. 工作深度对水下滑翔机运动状态影响研究[J]. 水下无人系统学报, 2022, 30(5): 597-604 doi: 10.11993/j.issn.2096-3920.202104016
YE Xiao-wei, LIU Yan-min, ZHANG Wen-zhong, LIU Yi-fu, YAO Zhi-chong. Research on Influence of Operating Depth on Motion State of Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 597-604. doi: 10.11993/j.issn.2096-3920.202104016
Citation: YE Xiao-wei, LIU Yan-min, ZHANG Wen-zhong, LIU Yi-fu, YAO Zhi-chong. Research on Influence of Operating Depth on Motion State of Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 597-604. doi: 10.11993/j.issn.2096-3920.202104016

工作深度对水下滑翔机运动状态影响研究

doi: 10.11993/j.issn.2096-3920.202104016
基金项目: 国家自然科学基金资助项目(51779232); 海南省重大科技计划项目资助(ZDKJ2019002).
详细信息
    作者简介:

    叶效伟(1986-), 男, 硕士, 高级工程师, 主要研究方向为水下运载器总体设计

  • 中图分类号: TJ630; U674.941; P715.5

Research on Influence of Operating Depth on Motion State of Underwater Gliders

  • 摘要: 驱动水下滑翔机运动的净浮力约占水下排水量的0.5%, 其微小变化都会对滑翔运动状态产生重要影响。滑翔过程中, 随深度而变化的海水密度和压力会导致排水量发生变化, 引起净浮力变化, 进而影响水下滑翔机的稳定运动状态。文中利用动力平衡方程研究净浮力变化对稳态滑翔运动状态的影响, 将排水量随深度变化的数学模型和动力学模型相结合, 通过仿真研究滑翔深度对滑翔运动状态的影响。研究表明: 因深度影响, 水下滑翔机的运动是动态平衡的滑翔运动, 而非稳定的平衡滑翔运动; 排水量-深度变化主要影响滑翔速度, 对滑翔姿态影响相对较小; 没有额外调节时, 下潜阶段滑翔速度先减小后增加, 上浮阶段先增加后减小; 此外, 可以通过功耗比较小的内部滑动质量的调节平衡净浮力变化对滑翔姿态的影响。文中的工作可为使用滑翔机进行精准控制开展海洋环境监测和探测提供参考。

     

  • 图  1  坐标系定义和质量分布示意图

    Figure  1.  Definition of coordinate system and mass distribution

    图  2  速度随净浮力变化曲线(工况1)

    Figure  2.  Curves of velocity changing with net buoyancy (condition 1)

    图  3  滑动质量位移随净浮力变化情况(工况1)

    Figure  3.  Curves of sliding mass position changing with net buoyancy(condition 1)

    图  4  速度随净浮力变化曲线(工况2)

    Figure  4.  Curves of velocity changing with net buoyancy(condition 2)

    图  5  净浮力与姿态角的变化情况(工况2)

    Figure  5.  Curves of attitude angle changing with net buoyancy (condition 2)

    图  6  攻角随净浮力变化情况(工况2)

    Figure  6.  Curves of attack angle changing with net buoyancy (condition 2)

    图  7  滑翔机水下排水量随深度变化曲线

    Figure  7.  Curves of underwater glider displacement changing with depth

    图  8  净浮力等效质量和滑动质量位移仿真结果

    Figure  8.  Simulation results of net buoyancy equivalent mass and sliding mass position

    图  9  滑翔速度随时间变化曲线

    Figure  9.  Curves of gliding velocities changing with times

    图  10  滑翔速度分量仿真结果

    Figure  10.  Simulation results of gliding velocity components

    图  11  滑翔纵倾角和角速度仿真结果

    Figure  11.  Simulation results of trim angle and angular velocity

    图  12  滑翔轨迹仿真结果对比曲线

    Figure  12.  Comparison of simulation results of gliding trajectories

  • [1] 钱洪宝, 卢晓亭. 我国水下滑翔机技术发展建议与思考[J]. 水下无人系统学报, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001

    Qian Hong-bao, Lu Xiao-ting. Technical Development of Underwater Glider in China: Suggestions and Thoughts[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001
    [2] Kang J, Jeoung S K, Oh J Y, et al. An Analysis of Carbon Fiber Hull Structure of a New Underwater Glider[J]. International Journal of Modern Physics B, 2018, 32(19): 1-6.
    [3] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [4] 杨燕, 孙秀军, 王延辉. 浅海型水下滑翔机技术研究现状分析[J]. 海洋技术学报, 2015, 34(4): 7-14.

    Yang Yan, Sun Xiu-jun, Wang Yan-hui. Analysis on the State-of-the-Art Shallow Water Underwater Gliders[J]. Journal of Ocean Technology, 2015, 34(4): 7-14.
    [5] Leonard N E, Graver J G. Model-based Feedback Control of Autonomous Underwater Gliders[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 633-645. doi: 10.1109/48.972106
    [6] Latifa U, Putri T W O, Trilaksono B R, et al. Modelling, Identification, and Simulation of Autonomous Underwater Glider in Longitudinal Plane for Control purpose[C]//2017 2nd International Conference on Control and Robotics Engineering (ICCRE), Bangkok: ICCRE, 2017.
    [7] Cao J J, Cao J L, Hu Y L, et al. LQR Control of a Three Dimensional Underwater Glider[J]. Journal of Ship Mechanics, 2019, 23(6): 674-682.
    [8] 孙秀军, 王磊, 桑宏强. Petrel-Ⅱ 200 水下滑翔机动力学建模与仿真[J]. 水下无人系统学报, 2019, 27(5): 480-487.

    Sun Xiu-jun, Wang Lei, Sang Hong-qiang. Dynamic Modeling and Simulation of Underwater Glider Petrel-II 200[J]. Journal of Ocean Technology, 2019, 27(5): 480-487.
    [9] 陈宇航, 严卫生, 高剑, 等. 水下滑翔机纵倾运动的自适应积分反演控制[J]. 兵工学报, 2011, 32(8): 981-985.

    Chen Yu-hang, Yan Wei-sheng, Gao Jian, et al. Adaptive Integral Backstepping Control for Vertical Pitch Motion of Underwater Gliders[J]. ActaarmamentarII, 2011, 32(8): 981-985.
    [10] 朱心科, 俞建成, 王晓辉. 能耗最优的水下滑翔机采样路径规划[J]. 机器人, 2011, 33(3): 360-365.

    Zhu Xin-ke, Yu Jian-cheng, Wang Xiao-hui. Sampling Path Planning of Underwater Glider for Optimal Energy Consumption[J]. Robot, 2011, 33(3): 360-365.
    [11] Zhang L H, Yan L, Wang Y. Progressive Improvement of Underwater Glider for High Performance[C]//The 17th International Manufacturing Conference. Shenzhen: IMCC, 2017.
    [12] Yang M, Wang Y, Wang S, et al. Motion Parameter Optimization Forgliding Strategy Analysis of Underwater Gliders[J]. Ocean engineering, 2019, 191: 106502. doi: 10.1016/j.oceaneng.2019.106502
    [13] Wang S, Li H, Wang Y, et al. Dynamic Modeling and Motion Analysis for a Dual-buoyancy-driven Full Ocean Depth Glider[J]. Ocean Engineering, 2019, 187: 106163. doi: 10.1016/j.oceaneng.2019.106163
    [14] Wang S X, Yang M, Wang Y H, et al. Optimization of Flight Parameters for Petrel-L Underwater Glider[J]. IEEE Journal of Oceanic Engineering, 2021, 46(3): 817-828. doi: 10.1109/JOE.2020.3030573
    [15] Yang Y P, Liu Y H, Wang S X, et al. Evaluation Models and Criteria of Motion Performance for Underwater Gliders[J]. Applied Ocean Research, 2020, 102: 102286.
    [16] Graver J G, Leonard N E. Underwater Glider Dynamics and Control[C]//Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology. Piscataway: IEEE, 2001: 1-14.
    [17] Zhang S W, Yu J C, Zhang A Q, et al. Spiraling Motion of Underwater Gliders: Modeling, Analysis, and Experimental Results[J]. Ocean Engineering, 2013, 60: 1-13. doi: 10.1016/j.oceaneng.2012.12.023
    [18] Graver J G. Underwater Glider: Dynamics, Control, and Design[D]. Princeton, NJ: Princeton University, 2005.
    [19] 朱俊江, 李三忠, 陆敬安, 等. 南海北部神狐海域地质环境综合调查及科学意义[J]. 地球科学, 2020, 45(4): 1416-1426.

    Zhu Jun-jiang, Li San-zhong, Lu Jing-an, et al. Scientific Implications and Preliminary Surveying Results of Geological and Physical Oceanography Environment in the Shenhu Area of the Northern South China Sea[J]. Earth Science, 2020, 45(4): 1416-1426.
    [20] IOC, SCOR, IAPSO. The International Thermodynamic Equation of Seawater-2010: Calculation and Use of Thermodynamic Properties[M]//Intergovernmental Oceanographic Commission, Manuals and Guides56. [S.l.]: UNESCO, 2010.
  • 加载中
图(12)
计量
  • 文章访问数:  2128
  • HTML全文浏览量:  9
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2021-09-01
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回
    服务号
    订阅号