Development and Key Technologies of Preset Undersea Weapon: a Review
-
摘要: 水下预置武器作为一种未来新型的水下攻防武器装备,将无人机、无人水下航行器、导弹及鱼雷等作战装备预先放置于大陆架、岛链等敏感海域并进行长时间潜伏,通过远程激活后执行侦察、打击及区域拒止等任务,该体系将岸-海-潜-空-天等资源根据作战任务进行整合,通过发挥整体优势来夺取未来水下战场空间。文章通过整理近年来国外公开报道的水下预置武器装备信息资料,分析其主要功能特点,概括提炼出包括远程激活技术、深海长时耐压防腐技术、预置载荷发射技术、隐蔽布放技术、深海探测侦察技术、水下组网通信技术、深海能源自持及补给技术和辅助决策技术等8项关键技术,旨在推动我国水下预置无人作战装备的构建。Abstract: Preset undersea weapon is regarded as a new form of future undersea attack and defense weapon equipment. Variety of payloads such as unmanned aerial vehicle(UAV), unmanned undersea vehicle(UUV), missile, torpedo which are used to perform tasks like reconnaissance, strike, area denial, etc., can be preset on a continental shelf or an island chain through preset undersea weapons for long time lurk, waiting for remote activation. This system aims to construct the multi-dimensional battlefield by taking the advantage of integrated resources of the land, maritime, undersea, air, space. In this paper, the characteristics, functions and key technologies of the preset undersea weapon are analyzed according to recent open reports and literatures. Eight key technologies are summarized, including remote activation technology, deep-sea long-term anti-pressure and corrosion protection technology, preset load launching technology, stealthy deployment technology, deep-sea detection and reconnaissance technology, underwater networking and communication technology, deep-sea energy self-sustaining and resupply technology, and auxiliary decision making technology. This article may benefit to promote the construction of undersea preset unmanned combat equipment in China.
-
Key words:
- preset undersea weapon /
- remote activation /
- area denial
-
[1] United States Navy. Autonomous Undersea Vehicle Requirement for 2025[R]. US: United States Department of Defense, 2016. [2] Defense Science Board. Next-Generation Unmanned Undersea Systems[R]. US: Office of the Secretary of Defense, 2016. [3] United States Department of Defense. Unmanned Systems Roadmap 2017-2042[R]. US: United States Department of Defense, 2018. [4] 陈开权. 亚太地区自导水雷的发展[J]. 水雷战与舰船防护, 2013, 21(1): 87-93.Chen Kai-quan. Development of Homing Mines in Asia Pacific[J]. Mine Warfare & Ship Self-defence, 2013, 21(1): 87-93. [5] 尹韶平, 刘瑞生. 鱼雷总体技术[M]. 北京: 国防工业出版社, 2011. [6] 钱东, 唐献平, 赵江. UUV技术发展与系统设计综述[J]. 鱼雷技术, 2014, 22(6): 401-414, 419.Qian Dong, Tang Xian-ping, Zhao Jiang. Overview of Technology Development and System Design of UUVs[J]. Torpedo Technology, 2014, 22(6): 401-414, 419. [7] 司广宇, 苗艳, 李关防. 水下立体攻防体系构建技术[J]. 指挥控制与仿真, 2018, 40(1): 1-8.Si Guang-yu, Miao Yan, Li Guan-fang. Underwater Tridimensional Attack-Defense System Technology[J]. Com-mand Control & Simulation, 2018, 40(1): 1-8. [8] Industrial Robotics. Distributed Agile Submarine Hunting (DASH) Program Completes Milestones[R]. Huntington Beach: Industrial Robotics, 2013(2013-04-04)[2018-9-20]. https://www.roboticstomorrow.com/news/2013/04/04/dis- tribut-ed-agile-submarine-hunting-dash-program-comple- tes-milestones/21557. [9] DARPA. Positioning system for deep ocean navigation (POSYDON)[R]. DARPA-BAA-15-30. Virginia: DARPA, 2015. [10] 袁亚, 张木, 李翔, 等. 国外水下预置无人作战装备研究[J]. 战术导弹技术, 2018(1): 51-55.Yuan Ya, Zhang Mu, Li Xiang, et al. Research on Underwater Pre-installed Unmanned Combat Equipment[J]. Tactical Missile Technology, 2018(1): 51-55. [11] 胡安平, 高锐, 张建春. 水声信道传输特性研究[J]. 现代导航, 2013(4): 278-284.Hu An-ping, Gao Rui, Zhang Jian-chun. Study of Underwater Acoustic Channel Transmission[J]. Modern Navigation, 2013(4): 278-284. [12] 赵辉, 陆军. 美军水下网络中心战体系与发展[J]. 飞航导弹, 2011(3): 37-42. [13] Yao Wang, Olinger D J. Modeling and Simulation of Tethered Undersea Kites[C]//Proceedings of the ASME 2016 Power and Energy Conference. North Carolina: ASME, 2016. -

计量
- 文章访问数: 2215
- HTML全文浏览量: 1
- PDF下载量: 2476
- 被引次数: 0