• 中国科技核心期刊
  • JST收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下爆炸声学效应研究现状与展望

郭锐 俞旸晖

郭锐, 俞旸晖. 水下爆炸声学效应研究现状与展望[J]. 水下无人系统学报, 2022, 30(3): 266-282. doi: 10.11993/j.issn.2096-3920.2022.03.001
引用本文: 郭锐, 俞旸晖. 水下爆炸声学效应研究现状与展望[J]. 水下无人系统学报, 2022, 30(3): 266-282. doi: 10.11993/j.issn.2096-3920.2022.03.001
GUO Rui, YU Yang-hui. Progress and Prospect of the Acoustic Effects of Underwater Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 266-282. doi: 10.11993/j.issn.2096-3920.2022.03.001
Citation: GUO Rui, YU Yang-hui. Progress and Prospect of the Acoustic Effects of Underwater Explosions[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 266-282. doi: 10.11993/j.issn.2096-3920.2022.03.001

水下爆炸声学效应研究现状与展望

doi: 10.11993/j.issn.2096-3920.2022.03.001
基金项目: 

国家自然科学基金项目资助(11972197).

详细信息
    作者简介:

    郭锐(1980-),男,博士,教授,主要研究方向为水下爆炸声学效应.

  • 中图分类号: TJ6;U674.7;O427.9

Progress and Prospect of the Acoustic Effects of Underwater Explosions

  • 摘要: 水下爆炸声源具有功率高、频带宽、无指向性等特点, 在海洋资源探测、水文环境反演、水下微小隐身目标探测和水声对抗干扰等领域有着广泛的应用前景。文中综述了水下爆炸声源特征中冲击波及理想气泡脉冲的声辐射机理, 分析了声场模型中用于描述水下爆炸声源传播和混响效应的水声传播模型与混响模型, 总结了水下爆炸声源的典型信号分析方法及其声学特性, 并结合水下爆炸声源的特点介绍了相关的典型工程应用。最后, 展望了水下爆炸声学效应研究在高能炸药材料水下爆炸的能量转换机制和致声机理、声混响强度预报、阵列多脉冲爆炸声源工程应用等方面的发展趋势, 为水下爆炸声学效应的进一步研究提供参考。

     

  • [1] Urick R J. Principles of Underwater Sound for Engineers[M]. New York:McGraw-Hill Press, 1967.
    [2] Arons A B, Yennie D R. Energy Partition in Underwater Explosion Phenomena[J]. Review of Modern Physics, 1948, 20(3):519-536.
    [3] 李宁,陈建峰,黄建国,等.各种水下声源的发声机理及其特性[J].应用声学, 2009, 28(4):241-248.

    Li Ning, Chen Jian-feng, Huang Jian-guo, et al. Sounding Mechanisms and Characteristics of Various Underwater Sound Sources[J]. Applied Acoustics, 2009, 28(4):241-248.
    [4] 卢苇.大功率甚低频水下声源研究[D].哈尔滨:哈尔滨工程大学, 2011.
    [5] 宁建国,王成,马天宝.爆炸与冲击动力学[M].北京:国防工业出版社, 2010.
    [6] 罗斯D.水下噪声原理[M].《水下噪声原理》翻译组,译.北京:海洋出版社, 1983.
    [7] Lighthill M J. On Sound Generated Aerodynamically I. General Theory[J]. Proceedings of the Royal Society of London Series A, 1952, 211(1107):564-587.
    [8] Tam C K W. Computational Aeroacoustics Examples Showing the Failure of the Acoustic Analogy Theory to Identify the Correct Noise Sources[J]. Journal of Computational Acoustics, 2002, 10(4):387-405.
    [9] Kirkwood.J.G, Bethe.H. The Pressure Wave Produced by an Underwater Explosion Part I:OSRD 588[R].[S.l]:Office of Scientific Research and Development, 1942.
    [10] Kirkwood J G, Brinkley S R. Theory of the Propagation of Shock Waves from Explosive Sources in Air and Water:OSRD 4818[R].[S.l.]:Office of Scientific Research and Development, 1945.
    [11] Kedrinskii V K. Kirkwood-Bethe Approximation for an Underwater Explosion with Cylindrical Symmetry[J]. Combustion Explosion&Shock Waves, 1972, 8(1):94-100.
    [12] Geers T L, Hunter K S. An Integrated Wave-effects Model for an Underwater Explosion Bubble[J]. The Journal of the Acoustical Society of America, 2002, 111(4):1584-1601.
    [13] 李澎,徐更光.水下爆炸冲击波传播的近似计算[J].火炸药学报, 2006, 29(4):21-24.

    Li Peng, Xu Geng-guang. Approximate Calculation of Underwater Explosion Shock Wave Propagation[J]. Chinese Journal of Explosives&Propellants, 2006, 29(4):21-24.
    [14] Wang S S, Gui Q Y, Zhang J X, et al. Theoretical and Experimental Study of Bubble Dynamics in Underwater Explosions[J]. Phys. Fluids, 2021, 33:126113.
    [15] 盛振新.水下连续爆炸声学特性及信号分析研究[D].南京:南京理工大学, 2013.
    [16] Weston D E. The Low-frequency Scaling Laws and Source Levels for Underground Explosions and Other Disturbances[J]. Geophysical Journal of the Royal Astronomical Society, 1960, 3(2):191-201.
    [17] Cole R H. Underwater Explosion[M]. New Jersey:Princeton University Press, 1948.
    [18] Arons A B. Underwater Explosion Shock Wave Parameters at Large Distances from the Charge[J]. Journal of the Acoustical Society of America, 1954, 26(3):343-346.
    [19] Blaik M, Christian E A. Near-Surface Measurements of Deep Explosions I. Pressure Pulses from Small Charges[J]. Journal of the Acoustical Society of America, 1965, 38(1):50-56.
    [20] Alpaslan T, Serdar B. Blast Pressure Measurements of an Underwater Detonation in the Sea[J]. Journal of Marine Science and Application, 2021(2):706-713.
    [21] Temkin S. Review of the Propagation of Pressure Pulses Produced by Small Underwater Explosive Charges:AD-A194642[R/OL].[2022-05-26]. https://apps.dtic.mil/sti/pdfs/ADA194642.pdf, 1988.
    [22] DuMond J W M, Cohen E R, Panofsky E K H, et al. A Determination of the Wave Forms and Laws of Propagation and Dissipation of Ballistic Shock Waves[J]. The Journal of the Acoustical Society of America, 1946, 18(1):97-118.
    [23] Landau L D, Lifshitz E M. Fluid Mechanics[M]. New York:Pergamon Press, 1959.
    [24] Wright W M. Propagation in Air of N Waves Produced by Sparks[J]. The Journal of the Acoustical Society of America, 1983, 73(6):1948-1955.
    [25] Temkin S, Maxham D. Nonlinear Lengthening of a Triangular Acoustic Pulse[J]. Physics of Fluids, 1985, 28(10):3013-3017.
    [26] 肖川,宋浦,梁安定.炸药水中爆炸规律的研究进展[J].火炸药学报, 2006, 29(6):19-22, 26.

    Xiao Chuan, Song Pu, Liang An-ding. Research Development of Underwater Explosion Mechanism[J]. Chinese Journal of Explosives&Propellants, 2006, 29(6):19-22, 26.
    [27] 张岩,李风华,李整林,等.爆炸信号中气泡脉动去除方法及其应用[J].声学学报, 2009, 34(2):124-130.

    Zhang Yan, Li Feng-hua, Li Zheng-lin, et al. The Method of Bubble Pulse Removal from Explosive Signals and Its Application[J]. Acta Acustica, 2009, 34(2):124-130.
    [28] 林京.爆炸声信号二次脉动的剔除与简正波提取[C]//中国声学学会2005年青年学术会议.杭州:中国声学学会, 2005.
    [29] 朱业,张仁和.负跃层浅海中的脉冲声传播[J].中国科学:数学物理学天文学技术科学, 1996(3):271-279.

    Zhu Ye, Zhang Ren-he. Pulse Propagation in Negative Thermocline Shallow Water Environment[J]. Science in China, Sea.A, 1996(3):271-279.
    [30] 史宇洺,齐梅,易成高,等.静水中气泡上升运动及阻力系数研究[J].计算力学学报, 2019, 36(3):422-428.

    Shi Ming-yu, Qi Mei, Yi Cheng-gao, et al. Study on Kinetic Properties and Drag Coefficient of Rising Bubble Behavior in Still Water[J]. Chinese Journal of Computational Mechanics, 2019, 36(3):422-428.
    [31] 徐贞,张迪,陈时,等.黏性对含气泡液体中声波传播的影响[J].中国科学:物理学力学天文学, 2018, 48(4):48-56.

    Xu Zhen, Zhang Di, Chen Shi, et al. Effect of Viscosity on Propagation Properties of Acoustic Waves in Liquids with Bubbles[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2018, 48(4):48-56.
    [32] 程广利,罗夏云,孟路稳,等.消声水池中水射流噪声特性试验研究[J].兵工学报, 2018, 39(6):1165-1170.

    Cheng Guang-li, Luo Xia-yun, Meng Lu-wen, et al. Experimental Investigation into Noise Characteristics of Water Jet in Anechoic Tank[J]. Acta Armamentarii, 2018, 39(6):1165-1170.
    [33] 周远,罗二仓.热声热机技术的研究进展[J].机械工程学报, 2009, 45(3):20-32.

    Zhou Yuan, Luo Er-cang. Advance in Thermoacoustic Technology[J]. Chinese Journal of Mechanical Engineering, 2009, 45(3):20-32.
    [34] 李捷.烟火药水下燃烧气泡运动特征及声源装药技术[D].南京:南京理工大学, 2016.
    [35] Besant W H. Hydrostatics and Hydrodynamics[M]. London:Cambridge University Press, 1859.
    [36] Rayleigh L. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity[J]. Phil. Mag, 1917, 34:94-98.
    [37] Plesset M S. The Dynamics of Cavitation Bubbles[J]. Journal of Applied Mechanics, 1949, 16:227-282.
    [38] Poritsky H. The Collapse or Growth of a Spherical Bubble or Cavity in a Viscous Fluid[J]. Journal of Applied Mechanics Transactions of the Asme, 1951, 18(3):332-333.
    [39] Noltingk B E, Neppiras E A. Cavitation Produced by Ultrasonics[J]. Proceedings of the Physical Society B, 1950, 63(9):674-685.
    [40] Noltingk B E, Neppiras E A. Cavitation Produced by Ultrasonics:Theoretical Conditions for the Onset of Cavitation[J]. Proceedings of the Physical Society B, 1951, 64(12):1032-1038.
    [41] Lauterborn W. Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids[J]. Journal of the Acoustical Society of America, 1976, 59(2):283-293.
    [42] 刘孟庵.水声工程[M].浙江:浙江科学技术出版社, 2002.
    [43] Etter P C. Underwater Acoustic Modeling and Simulation[M]. 3rd, ed. London, UK:Spon Press (Tay&Francis Group), 2003.
    [44] Abawi A T, Kuperman W A, Collins M D. The Coupled Mode Parabolic Equation[J]. The Journal of the Acoustical Society of America, 1996, 100(4):2613-2614.
    [45] 彭朝晖,张仁和.三维耦合简正波-抛物方程理论及算法研究[J].声学学报, 2005, 30(2):97-102.

    Peng Zhao-hui, Zhang Ren-he. On Study of the Theory and Algorithm of the Three Dimensional Coupled Mode-Parabolic Equation[J]. Acta Acustica, 2005, 30(2):97-102.
    [46] 秦继兴, Katsnelson Boris,彭朝晖,等.三维绝热简正波-抛物方程理论及应用[J].物理学报, 2016, 65(3):144-152.

    Qin Ji-xing, Katsnelson Boris, Peng Zhao-hui, et al. Three-Dimensional Adiabatic Mode Parabolic Equation Method and Its Applications[J]. Acta Physica Sinica, 2016, 65(3):144-152.
    [47] Paul C, Etter. Advanced Applications for Underwater Acoustic Modeling[EB/OL].(2012-5-8)[2022-04-02]. Https://xueshu.baidu.com/usercenter/paper/show?paperid=ec62729644b73d88dbe102f60e8de80f&site=xueshu_se.
    [48] Porter M B. The Bellhop Manual and User's Guide:Preliminary Draft. Heat, Light, and Sound Research[M]. Inc. La Jolla, CA, USA, 2011.
    [49] Gul S, Zaidi S, Khan R, et al. Underwater Acoustic Channel Modeling Using BELLHOP Ray Tracing Method[C]//International Bhurban Conference on Applied Sciences&Technology. Islamabad, Pakistan:IEEE, 2017:665-670.
    [50] 吴丽丽,彭朝晖.西太平洋远程脉冲声传播实验数据分析[J].中国科学:物理学力学天文学, 2016, 46(9):8-15.

    Wu Li-li, Peng Zhao-hui. Analysis of Long-range Sound Propagation in West Pacific Ocean[J]. Scientia Sinica Physica, Mechanica&Astronomica, 2016, 46(9):8-15.
    [51] Pekeris C L. Theory of Propagation of Explosive Sound in Shallow Water[M/OL].[S.l.]. Geological Society of America, 1948[2022-4-5]. https://pubs.geoscienceworld.org/gsa/books/book/33/chapter/3786458/THEORY-OF-PROPAGATION-OF-EXPLOSIVE-SOUND-IN?redirectedFrom=PDF.
    [52] Pierce A D. Extension of the Method of Normal Modes to Sound Propagation in an Almost-Stratified Medium[J]. Journal of the Acoustical Society of America, 1965, 37(1):19-27.
    [53] Evans R B. A Coupled Mode Solution for Acoustic Propagation in a Waveguide with Stepwise Depth Variations of a Penetrable Bottom[J]. The Journal of the Acoustical Society of America, 1983, 74(1):188-195.
    [54] Porter M, Reiss E L. A Numerical Method for Oceanacoustic Normal Modes[J]. The Journal of the Acoustical Society of America, 1984, 76(1):244-252.
    [55] 张仁和.水下声道中的平滑平均声场[J].声学学报, 1979(2):102-108.

    Zhang Ren-he. Smooth-Averaged Sound Field in Underwater Sound Channel[J]. Acta Acoustic, 1979(2):102-108.
    [56] 张仁和,李风华.浅海声传播的波束位移射线简正波理论[J].中国科学(A辑), 1999, 29(3):241-251.

    Zhang Ren-he, Li Feng-hua. BDRM Theory of Shallow Sea Acoustic Propagation[J]. Science in China (Seriesa A), 1999, 29(3):241-251.
    [57] 曹亮,韩引海,谢辉.定深爆炸声源声信号能量分配试验研究[J].声学技术, 2020, 39(1):45-48.

    Cao Liang, Han Yin-hai, Xie Hui. Experimental Study on the Sound Energy Distribution of the Depth-Detonating Explosion Source[J]. Technical Acoustics, 2020, 39(1):45-48.
    [58] Bucker H P, Morris H E. Normal-Mode Reverberation in Channels or Ducts[J]. Journal of the Acoustical Society of America, 1968, 44(3):827-829.
    [59] 吴承义.用射线方法计算浅海混响平均强度(I)[J].声学学报, 1979, 4(2):114-119.

    Wu Cheng-yi. Calculation of the Mean Intensity of Shallow Sea Reverberation by the Ray Method (I)[J]. Acta Acustica, 1979, 4(2):114-119.
    [60] 张仁和,金国亮.浅海平均混响强度的简正波理论[J].声学学报, 1984, 9(1):12-20.

    Zhang Ren-he, Jin Guo-liang. Mode Theory of Shallow Sea Mean Reverberation Intensity[J]. Acta Acustica, 1984, 9(1):12-20.
    [61] Ellis D D, Crowe D V. Bistatic Reverberation Calculations Using a Three-dimensional Scattering Function[J]. The Journal of the Acoustical Society of America, 1991, 89(5):2207-2214.
    [62] Cable P G, Yudichak T W, Dorfman Y, et al. On Shallow-Water Bottom Reverberation Frequency Dependency[J]. IEEE Journal of Oceanic Engineering, 2006, 31(1):145-155.
    [63] 惠娟,惠俊英,王自娟.收、发分置混响平均强度理论预报[J].声学学报, 2009, 34(1):47-53.

    Hui Juan, Hui Jun-ying, Wang Zi-juan. The Prediction of Bistatic Reverberation Average Strength[J]. Acta Acistica, 2009, 34(1):47-53.
    [64] 惠娟,王自娟,惠俊英,等.双基地混响平均强度理论及仿真预报[J].物理学报, 2009, 58(8):5492-5499.

    Hui Juan, Wang Zi-juan, Hui Jun-ying, et al. The Theoretical and Simulation Prediction of Bistatic Reverberation Average Strength[J]. Acta Physica Sinica, 2009, 58(8):5492-5499.
    [65] 盛振新,刘荣忠,郭锐.一种改进的水下爆炸声混响模型[J].声学学报, 2012, 37(5):484-488.

    Sheng Zhen-xing, Liu Rong-zhong, Guo Rui. An Advanced Reverberation Model of Underwater Explosive Sound[J]. Acta Acustica, 2012, 37(5):484-488.
    [66] Guo R, Lei L, Sheng Z X, et al. A Three-dimensional Bistatic Reverberation Model of Underwater Explosion by Interface Scattering at Variable Sound Speeds[J]. Journal of Low Frequency Noise Vibration and Active Control, 2019, 38(2):427-440.
    [67] 欧阳的华,潘功配,关华,等.具有脉动燃烧效应的烟火药水中燃烧声频特性[J].含能材料, 2008, 16(5):603-605.

    Ouyang Di-hua, Pan Gong-pei, Guan Hua, et al. Experimental Study on Acoustic Frequency Property of Pulsating Combustion Underwater for Pyrotechnic Composition[J]. Chinese Journal of Energetic Materials, 2008, 16(5):603-605.
    [68] 陈颙,王宝善.用气枪震源研究大陆浅部的地下结构及其变化[C]//2016中国地球科学联合学术年会论文集(二十五).北京:中国科学技术大学, 2016.
    [69] 温华兵,张健,尹群,等.水下爆炸船舱冲击响应时频特征的小波包分析[J].工程力学, 2008, 25(6):199-203.

    Wen Hua-bing, Zhang Jian, Yin Qun, et al. Wavelet Packet Analysis of Time-Frequency Characteristic of Cabin Shock Respinse Due to Underwater Explosion[J]. Engineering Mechanics, 2008, 25(6):199-203.
    [70] 李夕兵,张义平,刘志祥,等.爆破震动信号的小波分析与HHT变换[J].爆炸与冲击, 2005, 25(6):528-535.

    Li Xi-bing, Zhang Yi-ping, Liu Zhi-xiang, et al. Wavelet Analysis and Hilbert-Huang Transform of Blasting Vibration Signal[J]. Explosion and Shock Waves, 2005, 25(6):528-535.
    [71] 杜志鹏,汪玉,杨洋,等.舰艇水下爆炸冲击信号拟合及应用[J].振动与冲击, 2010, 29(3):182-184.

    Du Zhi-peng, Wang Yu, Yang Yang, et al. Curve Fit Method for Naval Underwater Explosion Shock Signal and Its Application[J]. Journal of Vibration and Shock, 2010, 29(3):182-184.
    [72] 晏俊伟,龙源,方向,等.基于小波包变换的爆破地震波时频特征提取及分析[J].振动与冲击, 2007, 26(4):25-29.

    Yan Jun-wei, Long Yuan, Fang Xiang, et al. Time-Frequency Characteristics Extracting and Analysis of Blasting Seismic Wave Based on Wavelet Packet Transformation[J]. Explosion and Shock Waves, 2007, 26(4):25-29.
    [73] 贾虎.纤维爆炸索水下爆炸特性与应用研究[D].合肥:中国科学技术大学, 2011.
    [74] 裴善报.水下连续爆炸声干扰器相关技术研究[D].南京:南京理工大学, 2015.
    [75] 有悦.深水爆炸压力时频特性分析方法研究与应用[D].武汉:武汉科技大学, 2021.
    [76] 彭思龙,李保滨,胡晰远.小波与滤波器组设计:理论及其应用[M].北京:清华大学出版社, 2017.
    [77] Goertner J F. Scaling Underwater Explosion Shock Waves for Differences in Ambient Sound Speed and Density:AD-A102365[R/OL].[2022-05-26]. https://apps.dtic.mil/sti/pdfs/ADA102365.pdf.
    [78] Geoff K, David J S, Alan G S. The Use of Meteorological Profiles to Predict the Peak Sound-Pressure Level at Distance from Small Explosions[J]. Journal of the Acoustical Society of America, 1987, 81(4):888-896.
    [79] Alexander G S, Peter H D. Peak Sound Pressure and Sound Exposure Level from Underwater Explosions in Shallow Water[J]. The Journal of the Acoustical Society of America, 2014, 136(3):218-223.
    [80] 吴成,廖莎莎,李华新,等.水下爆炸的一些声学特性分析[J].北京理工大学学报, 2008, 28(8):719-722.

    Wu Cheng, Liao Sha-sha, Li Hua-xin, et al. Analysis of Acoustic Characteristics for HE Charge Underwater Explosion[J]. Transactions of Beijing Institute of Technology, 2008, 28(8):719-722.
    [81] 吴成,廖莎莎,李华新,等. 3种炸药水下爆炸的声波特性测试及其对比分析[J].北京理工大学学报, 2009, 29(1):1-4.

    Wu Cheng, Liao Sha-sha, Li Hua-xin, et al. An Investigation and Analysis on the Acoustic Characteristics of Three Types of Explosive Charges by Underwater Explosion[J]. Transactions of Beijing Institute of Technology, 2009, 29(1):1-4.
    [82] 潘正伟,焦善武.弹药水中爆炸的水声效应[J].弹箭与制导学报, 1998(3):39-43.

    Pan Zheng-wei, Jiao Shan-wu. Underwater Acoustic Effect of Ammunition Explosion in Water[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 1998(3):39-43.
    [83] Vadov R V. Time Structure of Bistatic Reverberation in the Long-Range Propagation of Explosion-Generated Signals[J]. Acoustical Physics, 2007, 53(2):172-180.
    [84] Mikryukov A V, Popov O E. The Effect of Geoacoustic Characteristics of the Bottom on the Long-range Sound Propagation in an Inhomogeneous Ocean[J]. Acoustical Physics, 2006, 52(4):435-439.
    [85] Hines P C, Ellis D D. High-frequency Reverberation in Shallow Water[J]. IEEE Journal of Oceanic Engineering, 1997, 22(2):292-298.
    [86] Stanic S, Kennedy E, Ray R I. High-frequency Bistatic Reverberation from a Smooth Bottom[J]. J. Acoust. Soc. Am, 1993, 93(5):2633-2638.
    [87] Guzhavina D V, Gulin E P. Experimental Study of Low-frequency Bistatic Reverberation in Shallow Water[J]. Acoustical Physics, 2000, 46(6):664-669.
    [88] Li F H, Liu J J. Bistatic Reverberation in Shallow Water:Modeling and Data Comparison[J]. Chin.Phys.Lett, 2002, 19(8):1128-1130.
    [89] Weston D E. Underwater Explosions as Acoustic Sources[J]. Proc. Phys. Soc., 1960, 76(2):233-249.
    [90] Arons B A, Slifko J P, Carte A. Secondary Pressure Pulses Due to Gas Globe Oscillation in Underwater Explosions. I. Experimental Data[J]. Journal of the Acoustical Society of America, 1948, 20(3):271-276.
    [91] Arons A B. Secondary Pressure Pulses Due to Gas Globe Oscillation in Underwater Explosions. II. Selection of Adiabatic Parameters in the Theory of Oscillation[J]. Journal of the Acoustical Society of America, 1948, 20(3):271-276.
    [92] Christian E A, Blaik M. Near-Surface Measurements of Deep Explosions II. Energy Spectra of Small Charges[J]. Journal of the Acoustical Society of America, 1965, 38(1):57-62.
    [93] Christian E A. Source Levels for Deep Underwater Explosions[J]. The Journal of the Acoustical Society of America, 1967, 42(4):187-214.
    [94] Kibblewhite A C, Denham R N. Measurements of Acoustic Energy from Underwater Explosions[J]. The Journal of the Acoustical Society of America, 1970, 48(1B):346-351.
    [95] 张翠平.水下延时爆炸声信号的模拟[D].南京:南京理工大学, 2006.
    [96] 江国进,曹亮.基于HHT方法的水下爆炸声信号时频特性分析[J].舰船电子工程, 2020, 40(9):153-156.

    Jiang Guo-jin, Cao Liang. Time-frequency Characteristics of Underwater Explosion Signal Based on Hilbert-huang Transform[J]. Ship Electronic Engineering, 2020, 40(9):153-156.
    [97] 吴成,廖莎莎,李华新,等.基于Matlab方法水下爆炸声信号的特征提取及其分析[J].北京理工大学学报, 2008, 28(10):851-855.

    Wu Cheng, Liao Sha-sha, Li Hua-xin, et al. Extraction and Analysis of the Features of Underwater Explosion Signal Based on the Matlab Method[J]. Transactions of Beijing Institute of Technology, 2008, 28(10):851-855.
    [98] 贾虎,郑伟花,罗强.基于HHT的金属导爆索水下爆炸信号时频特性研究[J].工程爆破, 2015, 21(3):5-8, 17.

    Jia Hu, Zheng Wei-hua, Luo Qiang. The Characteristics of Time Frequency Signal Based on Hilbert-huang Transform in Underwater Explosion By Metal Detonating Cord[J]. Engineering Blasting, 2015, 21(3):5-8, 17.
    [99] 贾虎,沈兆武.纤维爆炸索水下爆炸声信号特征的小波分析[J].振动与冲击, 2011, 30(9):243-247.

    Jia Hu, Shen Zhao-wu. Acoustic Characteristics of Underwater Continuous Pulse Shock Wave[J]. Journal of Vibration and Shock, 2011, 30(9):243-247.
    [100] 范志强,马宏昊,沈兆武,等.水下连续脉冲冲击波的声学特性[J].爆炸与冲击, 2013, 33(5):501-506.

    Fan Zhi-qiang, Ma Hong-hao, Shen Zhao-wu, et al. Acoustic Characteristics of Underwater Continuous Pulse Shock Wave[J]. Explosion and Shock Waves, 2013, 33(5):501-506.
    [101] Sheng Z X, Liu R Z, Guo R. Reverberation Generated by Sequential Underwater Explosions[J]. Acoustical Physics, 2012, 58(2):236-242.
    [102] 裴善报,刘荣忠,郭锐.水下连续爆炸声学特性分析[J].南京理工大学学报:自然科学版, 2015, 39(2):144-148.

    Pei Shan-bao, Liu Rong-zong, Guo Rui. Analysis of Acoustic Characteristics of Sequential Underwater Explosion[J]. Journal of Nanjing University of Science and Technology, 2015, 39(2):144-148.
    [103] 裴善报,刘荣忠,郭锐.基于小波变换的水下连续爆炸声信号特征分析[J].爆炸与冲击, 2015, 35(4):520-526.

    Pei Shan-bao, Liu Rong-zong, Guo Rui. Analysis of Characteristics of Sequential Underwater Explosion Sound Signal Based on Wavelet Transform[J]. Explosion and Shock Waves, 2015, 35(4):520-526.
    [104] Guo R, Zhou H, Sheng Z, et al. Long-Range Reverberation of Sound Signals Generated by Sequential Underwater Explosions[J]. Journal of Computational&Theoretical Nanoscience, 2016, 13(4):2401-2406.
    [105] 易流.基于小波变换的深水条件下爆炸冲击波信号研究[D].武汉:武汉科技大学, 2015.
    [106] 孙钟阜,盛振新,刘荣忠,等.基于Hilbert-Huang变换的水下爆炸声信号分析[J].鱼雷技术, 2013, 21(3):189-192.

    Sun Zhong-fu, Sheng Zhen-xin, Liu Rong-zhong, et al. Analysis of Underwater Explosion Signals via HilbertHuang Transform[J]. Torpedo Technology, 2013, 21(3):189-192.
    [107] 刘琳,魏明涛,孙振新.基于爆炸声源的多基地远程探测技术研究[J].指挥控制与仿真, 2019, 41(1):99-103.

    Liu Lin, Wei Ming-tao, Sun Zhen-xin. The Study of Multi-base Remote Detection Technology Based on the Explosion Source[J]. Command Control&Simulation, 2019, 41(1):99-103.
    [108] 黄聪,朱伟锋,李迪.基于爆炸声源的远程水下目标定位方法[J].中国舰船研究, 2020, 15(6):176-181.

    Huang Cong, Zhu Wei-feng, Li Di. Remote Localization Method for Underwater Target Based on Explosive Sound Sources[J]. Chinese Journal of Ship Research, 2020, 15(6):176-181.
    [109] 张朝金,莫亚枭,孙炳文,等.半经验关系与匹配场联合处理的爆炸声源快速定位[J].声学学报, 2021, 46(5):641-652.

    Zhang Chao-jin, Mo Ya-xiao, Sun Bing-wen, et al. Underwater Explosive Source Localization Based on Semiempirical Relationships and Matched Field Processing[J]. Acta Acustica, 2021, 46(5):641-652.
    [110] 李继民.水下连续爆炸声信号对声自导鱼雷的对抗分析与研究[D].南京:南京理工大学, 2006.
    [111] 曾星星.水声干扰弹对声自导鱼雷干扰机理与仿真研究[D].南京:南京理工大学, 2012.
    [112] Kedrinskii V K. Hydrodynamics of Explosions:Experiments and Models[M]. Berlin:Springer, 2005.
    [113] 尚德江,张仁和.新型宽带爆炸声源及海底参数反演[J].声学技术, 2003, 22(z2):158-160.

    Shang De-jiang, Zhang Ren-he. Geoacoustic Inversion by Using the New Kind of Broadband Bomb Signals[J]. Technical Acoustics, 2003, 22(z2):158-160.
    [114] 周鸿涛,魏士俨,杨燕明,等.用定深爆炸声源反演海底声学参数[J].应用海洋学学报, 2015, 34(4):586-594.

    Zhou Hong-tao, Wei Shi-yan, Yang Yan-ming, et al. Inversion of Sea Bottom Geoacoustic Parameters Using Underwater Explosion at Fixed Depth[J]. Journal of Applied Oceanography, 2015, 34(4):586-594.
    [115] 徐东,李风华,郭永刚.利用脉冲声反演深海海底声学参数[C]//2016年全国声学学术会议论文集.武汉:中国声学学会, 2016:192-195.
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  0
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 网络出版日期:  2022-07-18

目录

    /

    返回文章
    返回
    服务号
    订阅号